Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(7): 077405    DOI: 10.1088/1674-1056/abe115
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Two-dimensional square-Au2S monolayer: A promising thermoelectric material with ultralow lattice thermal conductivity and high power factor

Wei Zhang(张伟)1, Xiao-Qiang Zhang(张晓强)1, Lei Liu(刘蕾)1,†, Zhao-Qi Wang(王朝棋)2,‡, and Zhi-Guo Li(李治国)3,§
1 School of Science, Southwest University of Science and Technology, Mianyang 621010, China;
2 Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 610065, China;
3 Laboratory for Shock Wave and Detonation Physics, Institute of Fluid Physics, Mianyang 610064, China
Abstract  The search for new two-dimensional (2D) harvesting materials that directly convert (waste) heat into electricity has received increasing attention. In this work, thermoelectric (TE) properties of monolayer square-Au2S are accurately predicted using a parameter-free ab initio Boltzmann transport formalism with fully considering the spin-orbit coupling (SOC), electron-phonon interactions (EPIs), and phonon-phonon scattering. It is found that the square-Au2S monolayer is a promising room-temperature TE material with an n-type (p-type) figure of merit ZT = 2.2 (1.5) and an unexpected high n-type ZT = 3.8 can be obtained at 600 K. The excellent TE performance of monolayer square-Au2S can be attributed to the ultralow lattice thermal conductivity originating from the strong anharmonic phonon scattering and high power factor due to the highly dispersive band edges around the Fermi level. Additionally, our analyses demonstrate that the explicit treatments of EPIs and SOC are highly important in predicting the TE properties of monolayer square-Au2S. The present findings will stimulate further the experimental fabrication of monolayer square-Au2S-based TE materials and offer an in-depth insight into the effect of SOC and EPIs on TE transport properties.
Keywords:  first-principles calculations      electron-phonon interactions      lattice thermal conductivity      thermoelectric properties  
Received:  11 November 2020      Revised:  14 January 2021      Accepted manuscript online:  29 January 2021
PACS:  74.78.-w (Superconducting films and low-dimensional structures)  
  74.25.fg (Thermoelectric effects)  
  63.22.-m (Phonons or vibrational states in low-dimensional structures and nanoscale materials)  
Fund: Project supported by the Doctoral Research Fund of Southwest University of Science and Technology (Grant No. 21zx7113) and the National Natural Science Foundation of China (Grant Nos. 11804284 and 11802280).
Corresponding Authors:  Lei Liu, Zhao-Qi Wang, Zhi-Guo Li     E-mail:  lei_liuchn@163.com;zhqwangsc@foxmail.com;zhiguo_li@foxmail.com

Cite this article: 

Wei Zhang(张伟), Xiao-Qiang Zhang(张晓强), Lei Liu(刘蕾), Zhao-Qi Wang(王朝棋), and Zhi-Guo Li(李治国) Two-dimensional square-Au2S monolayer: A promising thermoelectric material with ultralow lattice thermal conductivity and high power factor 2021 Chin. Phys. B 30 077405

[1] Zhou Z Z, Liu H J, Fan D D, Cao G H and Sheng C Y 2018 ACS Appl. Mater. Interfaces 10 37031
[2] Wu Y Y, Zhu X L, Yang H Y, Wang Z G, Li Y H and Wang B T 2020 Chin. Phys. B 29 087202
[3] Lan Y S, Chen X R, Hu C E, Cheng Y and Chen Q F 2019 J. Mater. Chem. A 7 11134
[4] Du B S, Jian J K, Liu H T, Liu J and Qiu L 2018 Chin. Phys. B 27 048102
[5] Hong M, Chen Z G and Zou J 2018 Chin. Phys. B 27 048403
[6] Yu J and Sun Q 2018 Appl. Phys. Lett. 112 053901
[7] He J, Xia Y, Naghavi S S, Ozolins V and Wolverton C 2019 Nat. Commun. 10 719
[8] Guo S D 2016 J. Mater. Chem. C 4 9366
[9] He J, Zhao L D, Zheng J C, Doak J W, Wu H, Wang H Q, Lee Y, Wolverton C, Kanatzidis M G and Dravid V P 2013 J. Am. Chem. Soc. 135 4624
[10] Soni A, Shen Y, Yin M, Zhao Y, Yu L, Hu X, Dong Z, Khor K A, Dresselhaus M S and Xiong Q 2012 Nano Lett. 12 4305
[11] Hicks L D and Dresselhaus M S 1993 Phys. Rev. B 47 12727
[12] Zhu X L, Liu P F, Xie G and Wang B T 2019 Phys. Chem. Chem. Phys. 21 10931
[13] Huang H H, Xing G, Fan X, Singh D J and Zheng W T 2019 J. Mater. Chem. C 7 5094
[14] Yu J, Li T, Nie G, Zhang B P and Sun Q 2019 Nanoscale 11 10306
[15] Shen S, Liang Y, Ma Y, Huang B, Wei W and Dai Y 2018 Phys. Chem. Chem. Phys. 20 14778
[16] Ma Y, Kuc A and Heine T 2017 J. Am. Chem. Soc. 139 11694
[17] Sharma S, Shafique A and Schwingenschlögl U 2020 ACS Appl. Energy Mater. 3 10147
[18] Chen X, Wang D, Liu X, Li L and Sanyal B 2020 J. Phys. Chem. Lett. 11 2925
[19] Wu Q, Xu W W, Lin D, Wang J and Zeng X C 2019 J. Phys. Chem. Lett. 10 3773
[20] Wang C, Wei S and Gao G 2019 ACS Appl. Nano Mater. 2 4061
[21] Yang L M, Bačić V, Popov I A, Boldyrev A I, Heine T, Frauenheim T and Ganz E 2015 J. Am. Chem. Soc. 137 2757
[22] Bardeen J and Shockley W 1950 Phys. Rev. 80 72
[23] Bruzzone S and Fiori G 2011 Appl. Phys. Lett. 99 222108
[24] Meng F, Sun S, Ma J, Chronister C, He J and Li W 2020 Mater. Today Phys. 13 100217
[25] Ma J, Meng F, He J, Jia Y and Li W 2020 ACS Appl. Mater. Interfaces 12 43901
[26] Cutler M and Mott N F 1969 Phys. Rev. 181 1336
[27] Madsen G K H, Carrete J and Verstraete M J 2018 Comput. Phys. Commun. 231 140
[28] Ziman J M 1960 Electrons and Phonons: The Theory of Transport Phenomena in Solids (Oxford: Clarendon Press)
[29] Ma J, Nissimagoudar A S and Li W 2018 Phys. Rev. B 97 045201
[30] Poncé S, Margine E R and Giustino F 2018 Phys. Rev. B 97 121201
[31] Giannozzi P, Baroni S, Bonini N, Calandra M, Car R, Cavazzoni C, Ceresoli D, Chiarotti G L, Cococcioni M, Dabo I, Dal Corso A, de Gironcoli S, Fabris S, Fratesi G, Gebauer R, Gerstmann U, Gougoussis C, Kokalj A, Lazzeri M, Martin-Samos L, Marzari N, Mauri F, Mazzarello R, Paolini S, Pasquarello A, Paulatto L, Sbraccia C, Scandolo S, Sclauzero G, Seitsonen A P, Smogunov A, Umari P and Wentzcovitch R M 2009 J. Phys.: Condens. Matter 21 395502
[32] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[33] Hamann D R 2013 Phys. Rev. B 88 085117
[34] Grimme S, Antony J, Ehrlich S and Krieg H 2010 J. Chem. Phys. 132 154104
[35] Li W, Carrete J, A. Katcho N and Mingo N 2014 Comput. Phys. Commun. 185 1747
[36] Bondi A 1964 J. Phys. Chem. 68 441
[37] Gao Z, Tao F and Ren J 2018 Nanoscale 10 12997
[38] Zhu X L, Liu P F, Zhang J, Zhang P, Zhou W X, Xie G and Wang B T 2019 Nanoscale 11 19923
[39] Poncé S, Margine E R, Verdi C and Giustino F 2016 Comput. Phys. Commun. 209 116
[40] Noffsinger J, Giustino F, Malone B D, Park C H, Louie S G and Cohen M L 2010 Comput. Phys. Commun. 181 2140
[41] Sun Y, Shuai Z and Wang D 2019 J. Phys. Chem. C 123 12001
[42] Zhang J, Liu H J, Cheng L, Wei J, Shi J, Tang X F and Uher C 2014 J. Appl. Phys. 116 023706
[43] Jin Z, Liao Q, Fang H, Liu Z, Liu W, Ding Z, Luo T and Yang N 2015 Sci. Rep. 5 18342
[44] Zhou Z Z, Liu H J, Fan D D and Cao G H 2019 J. Phys.: Condens. Matter 31 385701
[45] Fan D D, Liu H J, Cheng L, Liang J H and Jiang P H 2018 J. Mater. Chem. A 6 12125
[46] Huang Y, Zhou J, Wang G and Sun Z 2019 J. Am. Chem. Soc. 141 8503
[47] Zhao Y, Dai Z, Lian C, Zeng S, Li G, Ni J and Meng S 2017 Phys. Rev. Mater. 1 065401
[48] Giustino F, Cohen M L and Louie S G 2007 Phys. Rev. B 76 165108
[49] Hung N T, Nugraha A R T and Saito R 2017 Appl. Phys. Lett. 111 092107
[50] Zhao L D, Lo S H, Zhang Y, Sun H, Tan G, Uher C, Wolverton C, Dravid V P and Kanatzidis M G 2014 Nature 508 373
[51] Xia Y, Park J, Zhou F and Ozolinš V 2019 Phys. Rev. Appl. 11 024017
[52] Ma J, Chen Y and Li W 2018 Phys. Rev. B 97 205207
[53] Xu B and Verstraete M J 2014 Phys. Rev. Lett. 112 196603
[54] Ouyang T, Jiang E, Tang C, Li J, He C and Zhong J 2018 J. Mater. Chem. A 6 21532
[1] Prediction of lattice thermal conductivity with two-stage interpretable machine learning
Jinlong Hu(胡锦龙), Yuting Zuo(左钰婷), Yuzhou Hao(郝昱州), Guoyu Shu(舒国钰), Yang Wang(王洋), Minxuan Feng(冯敏轩), Xuejie Li(李雪洁), Xiaoying Wang(王晓莹), Jun Sun(孙军), Xiangdong Ding(丁向东), Zhibin Gao(高志斌), Guimei Zhu(朱桂妹), Baowen Li(李保文). Chin. Phys. B, 2023, 32(4): 046301.
[2] Advancing thermoelectrics by suppressing deep-level defects in Pb-doped AgCrSe2 alloys
Yadong Wang(王亚东), Fujie Zhang(张富界), Xuri Rao(饶旭日), Haoran Feng(冯皓然),Liwei Lin(林黎蔚), Ding Ren(任丁), Bo Liu(刘波), and Ran Ang(昂然). Chin. Phys. B, 2023, 32(4): 047202.
[3] Rational design of Fe/Co-based diatomic catalysts for Li-S batteries by first-principles calculations
Xiaoya Zhang(张晓雅), Yingjie Cheng(程莹洁), Chunyu Zhao(赵春宇), Jingwan Gao(高敬莞), Dongxiao Kan(阚东晓), Yizhan Wang(王义展), Duo Qi(齐舵), and Yingjin Wei(魏英进). Chin. Phys. B, 2023, 32(3): 036803.
[4] Single-layer intrinsic 2H-phase LuX2 (X = Cl, Br, I) with large valley polarization and anomalous valley Hall effect
Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), Yuan-Shuo Liu(刘元硕), Shuai Fu(傅帅),Xiao-Ning Cui(崔晓宁), Yi-Hao Wang(王易昊), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(3): 037306.
[5] Li2NiSe2: A new-type intrinsic two-dimensional ferromagnetic semiconductor above 200 K
Li-Man Xiao(肖丽蔓), Huan-Cheng Yang(杨焕成), and Zhong-Yi Lu(卢仲毅). Chin. Phys. B, 2023, 32(3): 037501.
[6] Prediction of one-dimensional CrN nanostructure as a promising ferromagnetic half-metal
Wenyu Xiang(相文雨), Yaping Wang(王亚萍), Weixiao Ji(纪维霄), Wenjie Hou(侯文杰),Shengshi Li(李胜世), and Peiji Wang(王培吉). Chin. Phys. B, 2023, 32(3): 037103.
[7] First-principles prediction of quantum anomalous Hall effect in two-dimensional Co2Te lattice
Yuan-Shuo Liu(刘元硕), Hao Sun(孙浩), Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(2): 027101.
[8] Bandgap evolution of Mg3N2 under pressure: Experimental and theoretical studies
Gang Wu(吴刚), Lu Wang(王璐), Kuo Bao(包括), Xianli Li(李贤丽), Sheng Wang(王升), and Chunhong Xu(徐春红). Chin. Phys. B, 2022, 31(6): 066205.
[9] Reaction mechanism of metal and pyrite under high-pressure and high-temperature conditions and improvement of the properties
Yao Wang(王遥), Dan Xu(徐丹), Shan Gao(高姗), Qi Chen(陈启), Dayi Zhou(周大义), Xin Fan(范鑫), Xin-Jian Li(李欣健), Lijie Chang(常立杰),Yuewen Zhang(张跃文), Hongan Ma(马红安), and Xiao-Peng Jia(贾晓鹏). Chin. Phys. B, 2022, 31(6): 066206.
[10] Evaluation of performance of machine learning methods in mining structure—property data of halide perovskite materials
Ruoting Zhao(赵若廷), Bangyu Xing(邢邦昱), Huimin Mu(穆慧敏), Yuhao Fu(付钰豪), and Lijun Zhang(张立军). Chin. Phys. B, 2022, 31(5): 056302.
[11] Erratum to “ Accurate GW0 band gaps and their phonon-induced renormalization in solids”
Tong Shen(申彤), Xiao-Wei Zhang(张小伟), Min-Ye Zhang(张旻烨), Hong Jiang(蒋鸿), and Xin-Zheng Li(李新征). Chin. Phys. B, 2022, 31(5): 059901.
[12] Advances in thermoelectric (GeTe)x(AgSbTe2)100-x
Hongxia Liu(刘虹霞), Xinyue Zhang(张馨月), Wen Li(李文), and Yanzhong Pei(裴艳中). Chin. Phys. B, 2022, 31(4): 047401.
[13] Effect of carbon nanotubes addition on thermoelectric properties of Ca3Co4O9 ceramics
Ya-Nan Li(李亚男), Ping Wu(吴平), Shi-Ping Zhang(张师平), Yi-Li Pei(裴艺丽), Jin-Guang Yang(杨金光), Sen Chen(陈森), and Li Wang(王立). Chin. Phys. B, 2022, 31(4): 047203.
[14] Magnetic proximity effect induced spin splitting in two-dimensional antimonene/Fe3GeTe2 van der Waals heterostructures
Xiuya Su(苏秀崖), Helin Qin(秦河林), Zhongbo Yan(严忠波), Dingyong Zhong(钟定永), and Donghui Guo(郭东辉). Chin. Phys. B, 2022, 31(3): 037301.
[15] First-principles study of stability of point defects and their effects on electronic properties of GaAs/AlGaAs superlattice
Shan Feng(冯山), Ming Jiang(姜明), Qi-Hang Qiu(邱启航), Xiang-Hua Peng(彭祥花), Hai-Yan Xiao(肖海燕), Zi-Jiang Liu(刘子江), Xiao-Tao Zu(祖小涛), and Liang Qiao(乔梁). Chin. Phys. B, 2022, 31(3): 036104.
No Suggested Reading articles found!