Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(7): 070301    DOI: 10.1088/1674-1056/abe371
GENERAL Prev   Next  

Approximate analytical solutions and mean energies of stationary Schrödinger equation for general molecular potential

Eyube E S1,†, Rawen B O2, and Ibrahim N3
1 Department of Physics, School of Physical Sciences, Modibbo Adama University of Technology, P M B 2076 Yola, Adamawa State, Nigeria;
2 Directorate of Basic and Remedial Studies, Abubakar Tafawa Balewa University(ATBU), P M B 750001, Bauchi, Bauchi State, Nigeria;
3 Department of Physics, Faculty of Science, P M B 1069, Maiduguri, Borno State, Nigeria
Abstract  The Schrödinger equation is solved with general molecular potential via the improved quantization rule. Expression for bound state energy eigenvalues, radial eigenfunctions, mean kinetic energy, and potential energy are obtained in compact form. In modeling the centrifugal term of the effective potential, a Pekeris-like approximation scheme is applied. Also, we use the Hellmann-Feynman theorem to derive the relation for expectation values. Bound state energy eigenvalues, wave functions and meanenergies of Woods-Saxon potential, Morse potential, Möbius squared and Tietz-Hua oscillators are deduced from the general molecular potential. In addition, we use our equations to compute the bound state energy eigenvalues and expectation values for four diatomic molecules viz. H2, CO, HF, and O2. Results obtained are in perfect agreement with the data available from the literature for the potentials and molecules. Studies also show that as the vibrational quantum number increases, the mean kinetic energy for the system in a Tietz-Hua potential increases slowly to a threshold value and then decreases. But in a Morse potential, the mean kinetic energy increases linearly with vibrational quantum number increasing.
Keywords:  general molecular potential, Schr?dinger equation, improved quantization rule  
Received:  22 November 2020      Revised:  11 January 2021      Accepted manuscript online:  08 February 2021
PACS:  03.65.Ge (Solutions of wave equations: bound states)  
  03.65.Ta (Foundations of quantum mechanics; measurement theory)  
  03.65.-w (Quantum mechanics)  
  34.20.Cf (Interatomic potentials and forces)  
Corresponding Authors:  Eyube E S     E-mail:  edwineyubes@mautech.edu.ng

Cite this article: 

Eyube E S, Rawen B O, and Ibrahim N Approximate analytical solutions and mean energies of stationary Schrödinger equation for general molecular potential 2021 Chin. Phys. B 30 070301

[1] Eyube E S, Ahmed A D and Timtere P 2020 Eur. Phys. J. Plus 135 893
[2] Hamzavi M, Rajabi A A and Hassanabadi H 2012 Mol. Phys. 110 389
[3] Taskin F 2009 Int. J. Theor. Phys. 48 2692
[4] Taskin F and Koçal G 2010 Chin. Phys. B 19 090314
[5] Hamzavi M, Rajabi A A and Thywe K E 2011 Int. J. Quantum Chem. 112 2701
[6] Mustafa O 2015 Phys. Scr. 90 065002
[7] Liu J Y, Hu X T and Jia C S 2014 Can. J. Chem. 92 40
[8] Sun G H, Dong S H and Saad N 2013 Ann. Phys. 525 934
[9] Hassanabadi H, Zarrinkamar S and Yazarloo B H 2013 Chin. Phys. B 22 060202
[10] Ikot A N, Okorie U S, Sever R and Rampho G J 2019 Eur. Phys. J. Plus 134 380
[11] Yanar H, Taş A, Salti M and Aydogdu O 2020 Eur. Phys. J. Plus 135 293
[12] Oyewumi K J, Oluwadare O J Sen K D and Babalola O A 2012 J. Math. Chem. 51 976
[13] Pekeris C L 1934 Phys. Rev. 45 98
[14] Greene R L and Aldrich C 1976 Phys. Rev. A 14 2363
[15] Liu J Y, Du J F and Jia C S 2013 Eur. Phys J. Plus 128 139
[16] Oyewumi K J, Falaye B J, Onate C A Oluwadare O J and Yahya W A 2014 Mol. Phys. 112 127
[17] Ikot A N, Chukwuocha E O, Onyeaju M C Onate C A Ita B I and Udoh M E 2018 Pramana J. Phys. 90 22
[18] Serrano F A, Gu X Y and Dong S H 2010 J. Math. Phys. 51 082103
[19] Falaye B J, Oyewumi K J and Abbas M 2013 Chin. Phys. B 22 110301
[20] Ikhdair S and Sever R 2010 Int. J. Mod. Phys. A 25 3941
[21] Zhang M C 2013 Chin. Phys. Lett. 30 110301
[22] Solaimani M, G H Sun and S H Dong 2018 Chin. Phys. B 27 040301
[23] Jie G and M C Zhang 2016 Chin. Phys. Lett. 33 010303
[24] Yanar H, Aydoğdu O and Salti M 2016 Mol. Phys. 114 13134
[25] Ma Z Q and Xu B W 2005 J. Mod. Phys. E 3 599
[26] Ma Z Q, Gonzalez-Cisneros A, Xu B W and Dong S H 2007 Phys. Lett. A 371 180
[27] Falaye J, Ikhdair S M and Hamzavi M 2015 J. Theor. Appl. Phys. 9 151
[28] Kunc J A and Gordillo-Vázquez 1997 J. Phys. Chem. A 101 1595
[29] Yazarloo B H, Hassanabadi H and Zarrinkamar S 2012 Eur. Phys. J. Plus 127 51
[30] Roy A K 2014 J. Math. Chem. 52 1405
[31] Horchani R, Al-kindi N and Jelassi H 2020 Mol. Phys. 1812746
[1] Propagation and modulational instability of Rossby waves in stratified fluids
Xiao-Qian Yang(杨晓倩), En-Gui Fan(范恩贵), and Ning Zhang(张宁). Chin. Phys. B, 2022, 31(7): 070202.
[2] Wave function collapses and 1/n energy spectrum induced by a Coulomb potential in a one-dimensional flat band system
Yi-Cai Zhang(张义财). Chin. Phys. B, 2022, 31(5): 050311.
[3] Exact solutions of the Schrödinger equation for a class of hyperbolic potential well
Xiao-Hua Wang(王晓华), Chang-Yuan Chen(陈昌远), Yuan You(尤源), Fa-Lin Lu(陆法林), Dong-Sheng Sun(孙东升), and Shi-Hai Dong(董世海). Chin. Phys. B, 2022, 31(4): 040301.
[4] Geometric quantities of lower doubly excited bound states of helium
Chengdong Zhou(周成栋), Yuewu Yu(余岳武), Sanjiang Yang(杨三江), and Haoxue Qiao(乔豪学). Chin. Phys. B, 2022, 31(3): 030301.
[5] Analysis of the rogue waves in the blood based on the high-order NLS equations with variable coefficients
Ying Yang(杨颖), Yu-Xiao Gao(高玉晓), and Hong-Wei Yang(杨红卫). Chin. Phys. B, 2021, 30(11): 110202.
[6] Thermodynamic properties of massless Dirac-Weyl fermions under the generalized uncertainty principle
Guang-Hua Xiong(熊光华), Chao-Yun Long(龙超云), and He Su(苏贺). Chin. Phys. B, 2021, 30(7): 070302.
[7] Wave packet dynamics of nonlinear Gazeau-Klauder coherent states of a position-dependent mass system in a Coulomb-like potential
Faustin Blaise Migueu, Mercel Vubangsi, Martin Tchoffo, and Lukong Cornelius Fai. Chin. Phys. B, 2021, 30(6): 060309.
[8] A local refinement purely meshless scheme for time fractional nonlinear Schrödinger equation in irregular geometry region
Tao Jiang(蒋涛), Rong-Rong Jiang(蒋戎戎), Jin-Jing Huang(黄金晶), Jiu Ding(丁玖), and Jin-Lian Ren(任金莲). Chin. Phys. B, 2021, 30(2): 020202.
[9] A meshless algorithm with the improved moving least square approximation for nonlinear improved Boussinesq equation
Yu Tan(谭渝) and Xiao-Lin Li(李小林). Chin. Phys. B, 2021, 30(1): 010201.
[10] Transparently manipulating spin-orbit qubit via exact degenerate ground states
Kuo Hai(海阔), Wenhua Zhu(朱文华), Qiong Chen(陈琼), Wenhua Hai(海文华). Chin. Phys. B, 2020, 29(8): 083203.
[11] Simulation of anyons by cold atoms with induced electric dipole moment
Jian Jing(荆坚), Yao-Yao Ma(马瑶瑶), Qiu-Yue Zhang(张秋月), Qing Wang(王青), Shi-Hai Dong(董世海). Chin. Phys. B, 2020, 29(8): 080303.
[12] Exact solution of the (1+2)-dimensional generalized Kemmer oscillator in the cosmic string background with the magnetic field
Yi Yang(杨毅), Shao-Hong Cai(蔡绍洪), Zheng-Wen Long(隆正文), Hao Chen(陈浩), Chao-Yun Long(龙超云). Chin. Phys. B, 2020, 29(7): 070302.
[13] Unified approach to various quantum Rabi models witharbitrary parameters
Xiao-Fei Dong(董晓菲), You-Fei Xie(谢幼飞), Qing-Hu Chen(陈庆虎). Chin. Phys. B, 2020, 29(2): 020302.
[14] Experimental investigation of the fluctuations in nonchaotic scattering in microwave billiards
Runzu Zhang(张润祖), Weihua Zhang(张为华), Barbara Dietz, Guozhi Chai(柴国志), Liang Huang(黄亮). Chin. Phys. B, 2019, 28(10): 100502.
[15] Quantum pseudodots under the influence of external vector and scalar fields
M Eshghi, S M Ikhdair. Chin. Phys. B, 2018, 27(8): 080303.
No Suggested Reading articles found!