Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(7): 070201    DOI: 10.1088/1674-1056/abe37b
GENERAL   Next  

Novel energy dissipative method on the adaptive spatial discretization for the Allen-Cahn equation

Jing-Wei Sun(孙竟巍)1, Xu Qian(钱旭)1,†, Hong Zhang(张弘)1, and Song-He Song(宋松和)1,2
1 Department of Mathematics, National University of Defense Technology, Changsha 410073, China;
2 State Key Laboratory of High Performance Computing, National University of Defense Technology, Changsha 410073, China
Abstract  We propose a novel energy dissipative method for the Allen-Cahn equation on nonuniform grids. For spatial discretization, the classical central difference method is utilized, while the average vector field method is applied for time discretization. Compared with the average vector field method on the uniform mesh, the proposed method can involve fewer grid points and achieve better numerical performance over long time simulation. This is due to the moving mesh method, which can concentrate the grid points more densely where the solution changes drastically. Numerical experiments are provided to illustrate the advantages of the proposed concrete adaptive energy dissipative scheme under large time and space steps over a long time.
Keywords:  moving mesh      energy dissipative      average vector field method      Allen-Cahn equation  
Received:  25 December 2020      Revised:  23 January 2021      Accepted manuscript online:  05 February 2021
PACS:  02.60.Cb (Numerical simulation; solution of equations)  
  05.70.Fh (Phase transitions: general studies)  
  02.70.Bf (Finite-difference methods)  
Fund: Project supported by the National Key R&D Program of China (Grant No. 2020YFA0709800), the National Natural Science Foundation of China (Grant Nos. 11901577, 11971481, 12071481, and 12001539), the Natural Science Foundation of Hunan, China (Grant Nos. S2017JJQNJJ0764 and 2020JJ5652), the fund from Hunan Provincial Key Laboratory of Mathematical Modeling and Analysis in Engineering (Grant No. 2018MMAEZD004), the Basic Research Foundation of National Numerical Wind Tunnel Project, China (Grant No. NNW2018-ZT4A08), and the Research Fund of National University of Defense Technology (Grant No. ZK19-37).
Corresponding Authors:  Xu Qian     E-mail:  qianxu@nudt.edu.cn

Cite this article: 

Jing-Wei Sun(孙竟巍), Xu Qian(钱旭), Hong Zhang(张弘), and Song-He Song(宋松和) Novel energy dissipative method on the adaptive spatial discretization for the Allen-Cahn equation 2021 Chin. Phys. B 30 070201

[1] Allen S M and Cahn J W 1979 Acta Metallurgica 27 1085
[2] Gokieli M and Marcinkowski L 2005 Nonlinear Analysis: Theory, Methods & Applications 63 e1143
[3] Benes M, Chalupecky V and Mikula K 2004 Appl. Numer. Math. 51 187
[4] Feng X B and Prohl A 2003 Numer. Math. 94 33
[5] Wheeler A A, Boettinger W J and McFadden G B 1992 Phys. Rev. A 45 7424
[6] Wang S Y, Duan W G and Yin X Z 2013 Chin. Phys. Lett. 30 110502
[7] Cai W J, Jiang C L, Wang Y S and Song Y Z 2019 J. Comput. Phys. 395 166
[8] Zhu C S, Hu Z and Wang K M 2020 Chin. Phys. B 29 034702
[9] Zhang H, Yan J Y, Qian X and Song S H 2021 Appl. Numer. Math. 161 372
[10] Zhang H, Qian X, Yan J Y and Song S H 2020 J. Comput. Phys. 418 109598
[11] Qian X, Fu H and Song S H 2017 Appl. Math. Comput. 307 1
[12] Qian X, Fu H and Song S H 2017 Adv. Appl. Math. Mech. 9 964
[13] Wang Y Y, Ding J H, Liu W B, Huang S S, Ke X Q, Wang Y Z, Zhang C and Zhao J J 2017 Chin. Phys. B 26 026102
[14] Zhu C S, Han D and Xu S 2018 Chin. Phys. B 27 094704
[15] Song Y H, Wang M T, Ni J, Jin J F and Zong Y P 2020 Chin. Phys. B 29 128201
[16] Evans L C, Soner H M and Souganidis P E 1992 Communications on Pure and Applied Mathematics 45 1097
[17] Quispel G R W and McLaren D I 2008 J. Phys. A Math. Theor. 41 045206
[18] Gong Y Z, Cai J X and Wang Y S 2014 J. Comput. Phys. 279 80
[19] Jiang C L, Sun J Q, Li H C and Wang Y F 2017 Appl. Math. Comput. 313 144
[20] Zahr M J and Persson P O 2020 Advanced Computational Methods for Aerodynamics 1 6-10 January 2020, Orlando, FL, 0537
[21] Alharbi A and Naire S 2019 J. Comput. Appl. Math. 356 219
[22] Yaguchi T, Matsuo T and Sugihara M 2010 J. Comput. Phys. 229 4382
[23] Mackenzie J A and Mekwi W R 2020 J. Comput. Appl. Math. 364 112320
[24] Furihata D and Matsuo T 2010 (New York: Chapman and Hall&CRC) p.103
[25] Huang W and Russell R D 2011 (New York: Springer) p. 83
[26] Huang W and Russell R D 1997 SIAM J. Numer. Anal. 34 1106
[27] Celledoni E, Grimm V, McLachlan R I, McLaren D I, O'Neale D, Owren B and Quispel G R W 2012 J. Comput. Phys. 231 6770
[28] Dahlby M and Owren B 2011 SIAM J. Sci. Comput. 33 2318
[29] Matsuo T 2007 J. Comput. Appl. Math. 203 32
[30] Eidnes S, Owren B and Ringholm T 2018 Adv. Comput. Math. 44 815
[31] Mackenzie J A and Robertson M L 2000 J. Comput. Phys. 161 537
[32] Miyatake Y and Matsuo T 2015 J. Comput. Appl. Math. 274 79
[33] Eidnes S and Li L 2020 SIAM J. Sci. Comput. 42 2865
[34] Zhang H, Qian X and Song S H 2020 Appl. Math. Lett. 102 106091
[35] Zhu B B, Hu Z X, Tang Y F and Zhang R L 2016 International Journal of Modeling, Simulation, and Scientific Computing 71650008
[36] Ma Y P, Kong L H, Hong J L and Cao Y 2011 Computers & Mathematics with Applications 61 319
[37] Shen J and Yang X F 2010 Discrete & Continuous Dynamical Systems-A 28 1669
[38] Kong L H, Wei P, Hong Y Q, Zhang P and Wang P 2019 Mathematical Methods in the Applied Sciences 42 3222
[1] Average vector field methods for the coupled Schrödinger–KdV equations
Zhang Hong (张弘), Song Song-He (宋松和), Chen Xu-Dong (陈绪栋), Zhou Wei-En (周炜恩). Chin. Phys. B, 2014, 23(7): 070208.
[2] A high order energy preserving scheme for the strongly coupled nonlinear Schrödinger system
Jiang Chao-Long (蒋朝龙), Sun Jian-Qiang (孙建强). Chin. Phys. B, 2014, 23(5): 050202.
No Suggested Reading articles found!