Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(6): 068504    DOI: 10.1088/1674-1056/ac0420
Special Issue: SPECIAL TOPIC — Quantum computation and quantum simulation
SPECIAL TOPIC—Quantum computation and quantum simulation Prev   Next  

An easily-prepared impedance matched Josephson parametric amplifier

Ya-Peng Lu(卢亚鹏)1,2, Quan Zuo(左权)1,2, Jia-Zheng Pan(潘佳政)1,2, Jun-Liang Jiang(江俊良)1,2, Xing-Yu Wei(魏兴雨)1,2, Zi-Shuo Li(李子硕)1,2, Wen-Qu Xu(许问渠)1,2, Kai-Xuan Zhang(张凯旋)1,2, Ting-Ting Guo(郭婷婷)1,2, Shuo Wang(王硕)1,2, Chun-Hai Cao(曹春海)1,2, Wei-Wei Xu(许伟伟)1,†, Guo-Zhu Sun(孙国柱)1,2,‡, and Pei-Heng Wu(吴培亨)1,2
1 Research Institute of Superconductor Electronics, School of Electronic Science and Engineering, Nanjing University, Nanjing 210093, China;
2 Purple Mountain Laboratories, Nanjing 211111, China
Abstract  An impedance matched parametric amplifier (IMPA) with Josephson junctions is fabricated and characterized. A hybrid structure containing coplanar and strip structures is implemented to realize an impedance taper line and a plate capacitor in an LC nonlinear resonator based on Josephson junctions. The upper plate of the capacitor is isolated with SiNx without grounding as well as the strips. Such easily-prepared designs greatly reduce the requirements for lithography alignment and precision, which makes the fabrication process more reliable. The experimental results show that in such IMPA a gain higher than 25 dB with a bandwidth of about 100 MHz can be obtained. This broadband amplifier operates close to the quantum limit. By adjusting the working point, a higher bandwidth of about 400 MHz can be obtained with a gain of about 17 dB.
Keywords:  Josephson junction      parametric amplification      impedance matching      gain and bandwidth  
Received:  04 January 2021      Revised:  30 March 2021      Accepted manuscript online:  09 April 2021
PACS:  85.25.Cp (Josephson devices)  
  52.35.Mw (Nonlinear phenomena: waves, wave propagation, and other interactions (including parametric effects, mode coupling, ponderomotive effects, etc.))  
Fund: Project partially supported by the National Key R&D Program of of China (Grant No. 2016YFA0301801), the National Natural Science Foundation of China (Grant Nos. 61521001 and 61571219), and PAPD, Dengfeng Project B of Nanjing University.
Corresponding Authors:  Wei-Wei Xu, Wei-Wei Xu     E-mail:  wwxu@nju.edu.cn;gzsun@nju.edu.cn

Cite this article: 

Ya-Peng Lu(卢亚鹏), Quan Zuo(左权), Jia-Zheng Pan(潘佳政), Jun-Liang Jiang(江俊良), Xing-Yu Wei(魏兴雨), Zi-Shuo Li(李子硕), Wen-Qu Xu(许问渠), Kai-Xuan Zhang(张凯旋), Ting-Ting Guo(郭婷婷), Shuo Wang(王硕), Chun-Hai Cao(曹春海), Wei-Wei Xu(许伟伟), Guo-Zhu Sun(孙国柱), and Pei-Heng Wu(吴培亨) An easily-prepared impedance matched Josephson parametric amplifier 2021 Chin. Phys. B 30 068504

[1] Caves C M 1982 Phys. Rev. D 26 1817
[2] Clerk A A, Devoret M H, Girvin S M, Marquardt F and Schoelkopf R J 2010 Rev. Mod. Phys. 82 1155
[3] Roy A and Devoret M 2016 C.R. Phys. 17 740
[4] Castellanos-Beltran M A, Irwin K D, and Hilton G C, and Vale L R and Lehnert K W 2008 Nat. Phys. 4 929
[5] Devoret M H and Schoelkopf R J 2013 Science 339 6124
[6] Wustmann W and Shumeiko V 2013 Phys. Rev. B 87 184501
[7] Yurke B and Buks E 2006 J. Lightwave Technol. 24 5054
[8] Yamamoto T, Inomata K, Watanabe M, Matsuba K, Miyazaki T, Oliver W D, Nakamura Y and Tsai J S 2008 Appl.Phys. Lett. 93 042510
[9] Zhou X, Schmitt V, Bertet P, Vion D, Wustmann W, Shumeiko V and Esteve D 2014 Phys. Rev. B 89 214517
[10] Castellanos-Beltran M A and Lehnert K W 2007 Appl. Phys. Lett. 91 083509
[11] Lu Y P, Pan J Z, Wei X Y, Jiang J L, Lu S, Li Z S, Tu X C, Kang L, Cao C H, Wang H B, Chen J, Xu W W, Sun G Z and Wu P H 2020 AIP Advances 10 025135
[12] Mutus J Y, White T C, Jeffrey E, Sank D, Barends R, Bochmann J, Chen Y, Chen Z, Chiaro B, Dunsworth A, Kelly J, Megrant A, Neill C, O’Malley P J J, Roushan P, Vainsencher A, Wenner J, Siddiqi I, Vijay R, Cleland A N and Martinis J M 2013 Appl. Phys. Lett. 103 122602
[13] Hatridge M, Vijay R, Slichter D,Clarke J and Siddiqi I 2011 Phys. Rev. B 83 134501
[14] Lecocq F, Ranzani L, and Peterson G, Cicak K, Simmonds R W, Teufel J D and Aumentado J 2014 Phys. Rev. Applied 7 024028
[15] Laflamme C and Clerk A A 2011 Phys. Rev. A 83 033803
[16] Narla A, Sliwa K M, Hatridge M, Shankar S, Frunzio L, Schoelkopf R J and Devoret M H 2014 Appl. Phys. Lett. 104 232605
[17] Kono S, Koshino K, Tabuchi Y, Noguchi A and Nakamura Y 2018 Nat. Phys. 14 546
[18] Lin Z R, Inomata K, Oliver W D, Koshino K, Nakamura Y, Tsai J S and Yamamoto T 2014 Appl. Phys. Lett. 103 132602
[19] Jeremy B C, Florent L, Raymond W S, José A and John D T 2016 Nat. Phys. 12 683
[20] Mutus J Y, White T C, Barends R, Chen Y, Chen Z, Chiaro B, Dunsworth A, Jeffrey E, Kelly J, Megrant A, Neill C, O’Malley P, Roushan P, Sank D, Vainsencher A, Wenner J, Sundqvist K M, Cleland A N and Martinis J M 2014 Appl. Phys. Lett. 104 263513
[21] Roy T, Kundu S, Chand M, Vadiraj A M, Ranadive A, Patankar, Meghan P, Aumentado J, Clerk A A and Vijay R 2015 Appl. Phys. Lett. 107 262601
[22] Huang K Q, Guo Q J, Song C, Zheng Y R, Deng H, Wu Y L, Jin Y R, Zhu X B and Zheng D N 2017 Chin. Phys. B 26 094203
[23] Yang R and Deng H 2020 IEEE Trans. Appl. Supercond. 30 1100306
[24] Su F F, Wang Z T, Xu H K, Zhao S K, Yan H S, Yang Z H, Tian Ye and Zhao S P 2019 Chin. Phys. B 28 110303
[25] Elo T, Abhilash T S, Perelshtein M R, Lilja I, Korostylev E V and Hakonen P J 2019 Appl. Phys. Lett. 114 152601
[26] Udson C M, Sébastien J, Philippe J, Bertrand R, Alexandre B, Fabien P, Christophe M and Carles A 2019 Phys. Rev. Applied 11 034035
[27] Bosman S J, Singh V, Bruno A and Steele G A 2015 Appl. Phys. Lett. 107 192602
[28] Dolan G J 1977 Appl. Phys. Lett. 31 337
[1] Enhanced topological superconductivity in an asymmetrical planar Josephson junction
Erhu Zhang(张二虎) and Yu Zhang(张钰). Chin. Phys. B, 2023, 32(4): 040307.
[2] Josephson vortices and intrinsic Josephson junctions in the layered iron-based superconductor Ca10(Pt3As8)((Fe0.9Pt0.1)2As2)5
Qiang-Tao Sui(随强涛) and Xiang-Gang Qui(邱祥冈). Chin. Phys. B, 2022, 31(9): 097403.
[3] Electromagnetic wave absorption properties of Ba(CoTi)xFe12-2xO19@BiFeO3 in hundreds of megahertz band
Zhi-Biao Xu(徐志彪), Zhao-Hui Qi(齐照辉), Guo-Wu Wang(王国武), Chang Liu(刘畅), Jing-Hao Cui(崔晶浩), Wen-Liang Li(李文梁), and Tao Wang(王涛). Chin. Phys. B, 2022, 31(8): 087504.
[4] Noncollinear phase-matching geometries in ultra-broadband quasi-parametric amplification
Ji Wang(王佶), Yanqing Zheng(郑燕青), and Yunlin Chen(陈云琳). Chin. Phys. B, 2022, 31(5): 054213.
[5] Asymmetric Fraunhofer pattern in Josephson junctions from heterodimensional superlattice V5S8
Juewen Fan(范珏雯), Bingyan Jiang(江丙炎), Jiaji Zhao(赵嘉佶), Ran Bi(毕然), Jiadong Zhou(周家东), Zheng Liu(刘政), Guang Yang(杨光), Jie Shen(沈洁), Fanming Qu(屈凡明), Li Lu(吕力), Ning Kang(康宁), and Xiaosong Wu(吴孝松). Chin. Phys. B, 2022, 31(5): 057402.
[6] Ac Josephson effect in Corbino-geometry Josephson junctions constructed on Bi2Te3 surface
Yunxiao Zhang(张云潇), Zhaozheng Lyu(吕昭征), Xiang Wang(王翔), Enna Zhuo(卓恩娜), Xiaopei Sun(孙晓培), Bing Li(李冰), Jie Shen(沈洁), Guangtong Liu(刘广同), Fanming Qu(屈凡明), and Li Lü(吕力). Chin. Phys. B, 2022, 31(10): 107402.
[7] Josephson current in an irradiated Weyl semimetal junction
Han Wang(王含) and Rui Shen(沈瑞). Chin. Phys. B, 2021, 30(7): 077406.
[8] Fabrication and characterization of all-Nb lumped-element Josephson parametric amplifiers
Hang Xue(薛航), Zhirong Lin(林志荣), Wenbing Jiang(江文兵), Zhengqi Niu(牛铮琦), Kuang Liu(刘匡), Wei Peng(彭炜), and Zhen Wang(王镇). Chin. Phys. B, 2021, 30(6): 068503.
[9] Controlling chaos and supressing chimeras in a fractional-order discrete phase-locked loop using impulse control
Karthikeyan Rajagopal, Anitha Karthikeyan, and Balamurali Ramakrishnan. Chin. Phys. B, 2021, 30(12): 120512.
[10] Anomalous Josephson current in quantum anomalous Hall insulator-based superconducting junctions with a domain wall structure
Qing Yan(闫青), Yan-Feng Zhou(周彦峰), Qing-Feng Sun(孙庆丰). Chin. Phys. B, 2020, 29(9): 097401.
[11] Quadruple-stacked Nb/NbxSi1-x/Nb Josephson junctions for large-scale array application
Wenhui Cao(曹文会), Jinjin Li(李劲劲), Lanruo Wang(王兰若), Yuan Zhong(钟源), Qing Zhong(钟青). Chin. Phys. B, 2020, 29(6): 067404.
[12] Nonlinear resonances phenomena in a modified Josephson junction model
Pernel Nguenang, Sandrine Takam Mabekou, Patrick Louodop, Arthur Tsamouo Tsokeng, and Martin Tchoffo. Chin. Phys. B, 2020, 29(12): 120501.
[13] Development of 0.5-V Josephson junction array devices for quantum voltage standards
Lanruo Wang(王兰若), Jinjin Li(李劲劲), Wenhui Cao(曹文会), Yuan Zhong(钟源), Zhonghua Zhang(张钟华). Chin. Phys. B, 2019, 28(6): 068501.
[14] Simulation and measurement of millimeter-wave radiation from Josephson junction array
Xin Zhang(张鑫), Sheng-Hui Zhao(赵生辉), Li-Tian Wang(王荔田), Jian Xing(邢建), Sheng-Fang Zhang(张胜芳), Xue-Lian Liang(梁雪连), Ze He(何泽), Pei Wang(王培), Xin-Jie Zhao(赵新杰), Ming He(何明), Lu Ji(季鲁). Chin. Phys. B, 2019, 28(6): 060305.
[15] Probing the minigap in topological insulator-based Josephson junctions under radio frequency irradiation
Guang Yang(杨光), Zhaozheng Lyu(吕昭征), Xiang Zhang(张祥), Fanming Qu(屈凡明), Li Lu(吕力). Chin. Phys. B, 2019, 28(12): 127402.
No Suggested Reading articles found!