Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(6): 068102    DOI: 10.1088/1674-1056/abf12c
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Synthesis and characterizations of boron and nitrogen co-doped high pressure and high temperature large single-crystal diamonds with increased mobility

Xin-Yuan Miao(苗辛原)1,†, Hong-An Ma(马红安)2, Zhuang-Fei Zhang(张壮飞)3, Liang-Chao Chen(陈良超)3, Li-Juan Zhou(周丽娟)1, Min-Si Li(李敏斯)1, and Xiao-Peng Jia(贾晓鹏)2
1 College of Physics, Guangxi University of Science and Technology, Liuzhou 545006, China;
2 State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, China;
3 Key Laboratory of Material Physics of Ministry of Education, and School of Physical Engineering, Zhengzhou University, Zhengzhou 450052, China
Abstract  We synthesized and investigated the boron-doped and boron/nitrogen co-doped large single-crystal diamonds grown under high pressure and high temperature (HPHT) conditions (5.9 GPa and 1290℃). The optical and electrical properties and surface characterization of the synthetic diamonds were observed and studied. Incorporation of nitrogen significantly changed the growth trace on surface of boron-containing diamonds. X-ray photoelectron spectroscopy (XPS) measurements showed good evident that nitrogen atoms successfully incorporate into the boron-rich diamond lattice and bond with carbon atoms. Raman spectra showed differences on the as-grown surfaces and interior between boron-doped and boron/nitrogen co-doped diamonds. Fourier transform infrared spectroscopy (FTIR) measurements indicated that the nitrogen incorporation significantly decreases the boron acceptor concentration in diamonds. Hall measurements at room temperature showed that the carriers concentration of the co-doped diamonds decreases, and the mobility increases obviously. The highest hole mobility of sample BNDD-1 reached 980 cm2·V-1·s-1, possible reasons were discussed in the paper.
Keywords:  high pressure and high temperature (HPHT)      diamond      growth of crystal      boron and nitrogen co-doped diamond  
Received:  23 January 2021      Revised:  19 March 2021      Accepted manuscript online:  24 March 2021
PACS:  81.10.Fq (Growth from melts; zone melting and refining)  
  61.72.S- (Impurities in crystals)  
  64.70.dg (Crystallization of specific substances)  
  07.57.Ty (Infrared spectrometers, auxiliary equipment, and techniques)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 51772120, 11704340, 11604246, and 11865005), the Scientific and Technological Project in Henan Province, China (Grant No. 202102210198), the Natural Science Foundation of Guangxi (China) (Grant No. 2018GXNS-FAA281024), and Doctor Start-up Foundation of Guangxi University of Science and Technology (Grant No. 20Z38).
Corresponding Authors:  Xin-Yuan Miao     E-mail:  miaoxy@gxust.edu.cn

Cite this article: 

Xin-Yuan Miao(苗辛原), Hong-An Ma(马红安), Zhuang-Fei Zhang(张壮飞), Liang-Chao Chen(陈良超), Li-Juan Zhou(周丽娟), Min-Si Li(李敏斯), and Xiao-Peng Jia(贾晓鹏) Synthesis and characterizations of boron and nitrogen co-doped high pressure and high temperature large single-crystal diamonds with increased mobility 2021 Chin. Phys. B 30 068102

[1] Thonke K 2003 Semiconductor Science & Technology 18 S20
[2] Isberg J, Hammersberg J, Johansson E, Wikstrom T, Twitchen D J, Whitehead A J, Coe S E and Scarsbrook G A 2002 Science 297 1670
[3] Prikhodko D, Tarelkin S, Bormashov V, Golovanov A, Kuznetsov M, Teteruk D, Volkov A and Buga S 2016 MRS Commun. 6 71
[4] Volpe P N, Pernot J, Muret P and Omnés F 2009 Appl. Phys. Lett. 94 92
[5] Klein T, Achatz P, Kacmarcik J, Marcenat C, Gustafsson F, Marcus J, Bustarret E, Pernot J and Omnes F 2007 Phys. Rev. B 75 165313
[6] Blank V, Buga S, Bormashov V, Denisov V, Kirichenko A, Kulbachinskii V, M Kuznetsov, Kytin V, Kytin G and Tarelkin S 2015 Europhys. Lett. 108 67014
[7] Ekimov E A, Sidorov V A, Bauer E D, Mel'Nik N N, Curro N J, Thompson J D and Stishov S M 2004 Cheminform. 19 351
[8] Locher R, Wagner J, Fuchs F, Wild C, Hiesinger P, Gonon P and Koidl P 1995 Materials Science & Engineering B 29 211
[9] Pernot J, Volpe P N, Omnés F, Muret P, Mortet V and Haenen K 2010 Phys. Rev. B 81 205203
[10] Liang Z Z, Kanda H, Jia X P, Ma H A, Zhu P W and Guan Q F 2006 Carbon 44 913
[11] Lu Z Y, Wang Y K, Fang S, Cai Z H, Zhao Z D, Wang C X, Ma H A, Chen L C and Jia X P 2020 Chin. Phys. B 29 128103
[12] Yiming Z, Larsson F and Larsson K 2013 Theoretical Chemistry Accounts 133 1432
[13] Sonoda S, Won J H, Yagi H and Hatta A 1997 Appl. Phys. Lett. 70 2574
[14] Hu M, Bi N, Li S, Su T, Hu Q, Ma H and Jia X P 2017 CrystEngComm 19 4571
[15] Liang Q, Yan C S, Meng Y, Lai J, Krasnicki S, Mao H K and Hemley R J 2009 J. Phys.: Condens. Matter 21 364215
[16] Lin IN, Hsu T, Lin G-M, Chou Y-P, Chen TT and Cheng H F 2003 Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures 21 1074
[17] Miao X, Chen L, Ma H, Fang C, Guo L, Fang S, Wang Y and Jia XP 2018 CrystEngComm 20 7109
[18] Miao X, Chen L, Ma H, Fang C, Guo L, Wang Z and Jia X P 2019 CrystEngComm 21 3961
[19] Fang C, Shen W, Zhang Y, Mu P, Zhang Z and Jia X P 2019 Crystal Growth & Design 19 3955
[20] Titantah J T and Lamoen D 2007 Diamond & Related Materials 16 581
[21] Sun S, Jia X, Zhang Z, Li Y, Yan B, Liu X, Ma HA and Jia XP 2013 J. Crystal Growth 377 22
[22] Croot A, Othman, M Z, Conejeros S, Fox N A and Allan N L 2018 J. Phys.: Condens. Matter 30
[23] Li R B 2005 Solid State Commun. 135 155
[24] Mavrin B N, Denisov V N, Popova D M, Skryleva E A, Kuznetsov M S and Nosukhin S A 2008 Phys. Lett. A 372 3914
[25] Blank V D, Denisov V N, Kirichenko A N, Kuznetsov M S, Mavrin B N and Nosukhin S A 2008 Diamond & Related Materials 17 1840
[26] Karna S K, Martyshkin D V, Vohra Y K and Weir S T 2013 MRS Proceedings 1519 mrsf12-1519-mm03-27.
[27] Liu X, Chen X, Singh D J, Stern R A, Wu J, Petitgirard S, Bina C R and Jacobsen S D 2019 Proc. Natl. Acad. Sci. USA 16 7703
[28] Pruvost F and Deneuville A 2001 Diamond & Related Materials 10 531
[29] Mortet V, Vlčková Živcová Z, Taylor A, Frank O, Hubík P and Trémouilles D 2017 Carbon 115 279
[30] Wang Y G, Lau S P, Tay B K and Zhang X H 2002 J. Appl. Phys. 92 7253
[31] Mortet V, Pernot J, Jomard F, Soltani A, Remes Z and Barjon J 2015 Diamond and Related Materials 53 29
[32] Smith S D and Taylor W 1962 Proc. Phys. Soc. 79 1142
[33] Collins A T, Dean P J, Lightowlers E C and Sherman W F 1965 Phys. Rev. 140 1272
[34] Locher R, Wagner J, Fuchs F, Maier M, Gonon P and Koidl P 1995 Diamond & Related Materials 4 678
[1] Adaptive genetic algorithm-based design of gamma-graphyne nanoribbon incorporating diamond-shaped segment with high thermoelectric conversion efficiency
Jingyuan Lu(陆静远), Chunfeng Cui(崔春凤), Tao Ouyang(欧阳滔), Jin Li(李金), Chaoyu He(何朝宇), Chao Tang(唐超), and Jianxin Zhong(钟建新). Chin. Phys. B, 2023, 32(4): 048401.
[2] Suppression and compensation effect of oxygen on the behavior of heavily boron-doped diamond films
Li-Cai Hao(郝礼才), Zi-Ang Chen(陈子昂), Dong-Yang Liu(刘东阳), Wei-Kang Zhao(赵伟康),Ming Zhang(张鸣), Kun Tang(汤琨), Shun-Ming Zhu(朱顺明), Jian-Dong Ye(叶建东),Rong Zhang(张荣), You-Dou Zheng(郑有炓), and Shu-Lin Gu(顾书林). Chin. Phys. B, 2023, 32(3): 038101.
[3] In situ study of calcite-III dimorphism using dynamic diamond anvil cell
Xia Zhao(赵霞), Sheng-Hua Mei(梅升华), Zhi Zheng(郑直), Yue Gao(高悦), Jiang-Zhi Chen(陈姜智), Yue-Gao Liu(刘月高), Jian-Guo Sun(孙建国), Yan Li(李艳), and Jian-Hui Sun(孙建辉). Chin. Phys. B, 2022, 31(9): 096201.
[4] Determination of band alignment between GaOx and boron doped diamond for a selective-area-doped termination structure
Qi-Liang Wang(王启亮), Shi-Yang Fu(付诗洋), Si-Han He(何思翰), Hai-Bo Zhang(张海波),Shao-Heng Cheng(成绍恒), Liu-An Li(李柳暗), and Hong-Dong Li(李红东). Chin. Phys. B, 2022, 31(8): 088104.
[5] Synergistic influences of titanium, boron, and oxygen on large-size single-crystal diamond growth at high pressure and high temperature
Guang-Tong Zhou(周广通), Yu-Hu Mu(穆玉虎), Yuan-Wen Song(宋元文), Zhuang-Fei Zhang(张壮飞), Yue-Wen Zhang(张跃文), Wei-Xia Shen(沈维霞), Qian-Qian Wang(王倩倩), Biao Wan(万彪), Chao Fang(房超), Liang-Chao Chen(陈良超), Ya-Dong Li(李亚东), and Xiao-Peng Jia(贾晓鹏). Chin. Phys. B, 2022, 31(6): 068103.
[6] Dependence of nitrogen vacancy color centers on nitrogen concentration in synthetic diamond
Yong Li(李勇), Xiaozhou Chen(陈孝洲), Maowu Ran(冉茂武), Yanchao She(佘彦超), Zhengguo Xiao(肖政国), Meihua Hu(胡美华), Ying Wang(王应), and Jun An(安军). Chin. Phys. B, 2022, 31(4): 046107.
[7] Investigating the thermal conductivity of materials by analyzing the temperature distribution in diamond anvils cell under high pressure
Caihong Jia(贾彩红), Min Cao(曹敏), Tingting Ji(冀婷婷), Dawei Jiang(蒋大伟), and Chunxiao Gao(高春晓). Chin. Phys. B, 2022, 31(4): 040701.
[8] Effect of oxygen on regulation of properties of moderately boron-doped diamond films
Dong-Yang Liu(刘东阳), Li-Cai Hao(郝礼才), Wei-Kang Zhao(赵伟康), Zi-Ang Chen(陈子昂), Kun Tang(汤琨), Shun-Ming Zhu(朱顺明), Jian-Dong Ye(叶建东), Rong Zhang(张荣), You-Dou Zheng(郑有炓), and Shu-Lin Gu(顾书林). Chin. Phys. B, 2022, 31(12): 128104.
[9] Origin, characteristics, and suppression of residual nitrogen in MPCVD diamond growth reactor
Yan Teng(滕妍), Dong-Yang Liu(刘东阳), Kun Tang(汤琨), Wei-Kang Zhao(赵伟康), Zi-Ang Chen(陈子昂), Ying-Meng Huang(黄颖蒙), Jing-Jing Duan(段晶晶), Yue Bian(卞岳), Jian-Dong Ye(叶建东), Shun-Ming Zhu(朱顺明), Rong Zhang(张荣), You-Dou Zheng(郑有炓), and Shu-Lin Gu(顾书林). Chin. Phys. B, 2022, 31(12): 128106.
[10] Optical properties of He+-implanted and diamond blade-diced terbium gallium garnet crystal planar and ridge waveguides
Jia-Li You(游佳丽), Yu-Song Wang(王雨松), Tong Wang(王彤), Li-Li Fu(付丽丽), Qing-Yang Yue(岳庆炀), Xiang-Fu Wang(王祥夫), Rui-Lin Zheng(郑锐林), and Chun-Xiao Liu(刘春晓). Chin. Phys. B, 2022, 31(11): 114203.
[11] Equal compressibility structural phase transition of molybdenum at high pressure
Lun Xiong(熊伦), Bin Li(李斌), Fang Miao(苗芳), Qiang Li (李强), Guangping Chen(陈光平), Jinxia Zhu(竹锦霞), Yingchun Ding(丁迎春), and Duanwei He(贺端威). Chin. Phys. B, 2022, 31(11): 116102.
[12] Significant suppression of residual nitrogen incorporation in diamond film with a novel susceptor geometry employed in MPCVD
Weikang Zhao(赵伟康), Yan Teng(滕妍), Kun Tang(汤琨), Shunming Zhu(朱顺明), Kai Yang(杨凯), Jingjing Duan(段晶晶), Yingmeng Huang(黄颖蒙), Ziang Chen(陈子昂), Jiandong Ye(叶建东), and Shulin Gu(顾书林). Chin. Phys. B, 2022, 31(11): 118102.
[13] Robust and intrinsic type-III nodal points in a diamond-like lattice
Qing-Ya Cheng(程青亚), Yue-E Xie(谢月娥), Xiao-Hong Yan(颜晓红), and Yuan-Ping Chen(陈元平). Chin. Phys. B, 2022, 31(11): 117101.
[14] Effect of the codoping of N—H—O on the growth characteristics and defects of diamonds under high temperature and high pressure
Zhenghao Cai(蔡正浩), Bowei Li(李博维), Liangchao Chen(陈良超), Zhiwen Wang(王志文), Shuai Fang(房帅), Yongkui Wang(王永奎), Hongan Ma(马红安), and Xiaopeng Jia(贾晓鹏). Chin. Phys. B, 2022, 31(10): 108104.
[15] Design of vertical diamond Schottky barrier diode with junction terminal extension structure by using the n-Ga2O3/p-diamond heterojunction
Wang Lin(林旺), Ting-Ting Wang(王婷婷), Qi-Liang Wang(王启亮), Xian-Yi Lv(吕宪义), Gen-Zhuang Li(李根壮), Liu-An Li(李柳暗), Jin-Ping Ao(敖金平), and Guang-Tian Zou(邹广田). Chin. Phys. B, 2022, 31(10): 108105.
No Suggested Reading articles found!