Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(4): 044215    DOI: 10.1088/1674-1056/abdea6
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Influence of the coupled-dipoles on photosynthetic performance in a photosynthetic quantum heat engine

Ling-Fang Li(李玲芳) and Shun-Cai Zhao(赵顺才)
1 Department of Physics, Kunming University of Science and Technology, Kunming 650500, China
Abstract  Recent evidence suggests that the multiple charge-separation pathways can contribute to photosynthetic performance. In this work, the influence of coupled-dipoles on photosynthetic performance was investigated in a two-charge separation pathways quantum heat engine (QHE) model. And the population dynamics of the two coupled sites, j-V characteristics, and power involving this photosynthetic QHE model were evaluated for the photosynthetic performance. The results illustrate that the photosynthetic performance can be greatly enhanced but quantum interference is deactivated by the coupled-dipoles between the two-charge separation pathways. However, the photosynthetic performance can also be promoted by the deactivated quantum interference owing to the coupled-dipoles. It is a novel role of the coupled-dipoles in the energy transport process of biological photosynthetic, and some artificial strategies may be motivated by this photosynthetic QHE model in the future.
Keywords:  photosynthetic performance      coupled-dipole      photosynthetic heat engine  
Received:  03 December 2020      Revised:  17 January 2021      Accepted manuscript online:  22 January 2021
PACS:  42.50.Gy (Effects of atomic coherence on propagation, absorption, and Amplification of light; electromagnetically induced transparency and Absorption)  
  42.50.-p (Quantum optics)  
  32.80.Qk (Coherent control of atomic interactions with photons)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 62065009 and 61565008) and the General Program of Yunnan Applied Basic Research Project, China (Grant No. 2016FB009).
Corresponding Authors:  Corresponding author. E-mail: zhaosc@kmust.edu.cn   

Cite this article: 

Ling-Fang Li(李玲芳) and Shun-Cai Zhao(赵顺才) Influence of the coupled-dipoles on photosynthetic performance in a photosynthetic quantum heat engine 2021 Chin. Phys. B 30 044215

1 Engel G S, Calhoun T R, Read E L, Ahn T K, Mancal T, Cheng Y C, Blankenship R E and Fleming G R 2007 Nature 446 782
2 Akihito L and Fleming G R 2009 Proc. Natl. Acad. Sci. USA 106 17255
3 Zhu J, Kais S, Rebentrost P and Aspuru-Guzik A 2011 J. Phys. Chem. B 115 1531
4 Caram J R, Lewis N H C, Fidler A F and Engel G S 2012 J. Chem. Phys. 136 17255
5 Rebentrost P, Mohseni M, Kassal I, Lloyd S and Aspuru-Guzik A 2009 New J. Phys. 11 033003
6 Killoran N, Huelga S F and Plenio M B 2015 J. Chem. Phys. 143 155102
7 Mohseni M, Rebentrost P, Lloyd S and Aspuru-Guzik A 2008 J. Chem. Phys. 129 174106
8 Estàk Z and Blankenship R E 2002 Photosynthetica 40 12
9 Gilmore J and McKenzie R H 2008 J. Phys. Chem. A 112 2162
10 Caruso F, Chin A W, Datta A, Huelga S F and Plenio M B 2009 J. Chem. Phys. 131 105106
11 Chen H B, Chiu P Y and Chen Y N 2016 Phys. Rev. E 94 052101
12 Collini E, Wong C Y, Wilk K E, Curmi P M G, Brumer P and Scholes G D 2010 Nature 463 644
13 Romero E, Augulis R, Novoderezhkin V I, Ferretti M O, Thieme J, Zigmantas D and Grondelle R V 2014 Nat. Phys. 10 676
14 Zhao S C and Chen J Y 2019 New J. Phys. 21 103015
15 Fingerhut B P, Zinth W and Vivie-Riedle R de 2010 Phys. Chem. Chem. Phys. 12 422
16 Chen J Y and Zhao S C 2020 Chin. Phys. B 29 064207
17 Blankenship R E, Tiede D M, Barber J, Brudvig G W, Fleming G, Ghirardi M, Gunner M, Junge W, Kramer D M, Melis A, Moore T A, Moser C, Nocera D G, Nozik A J, Ort D R, Parson W W, Prince R C and Sayre R T 2011 Science 332 805
18 Zhao S C, Chen J Y and Li X 2020 Eur. Phys. J. Plus 135 892
19 Fleming G R 2009 Proc. Natl. Acad. Sci. USA 106 17255
20 Huelga S F and Plenio M B 2013 Contemp. Phys. 54 181
21 Zong X L, Song W, Zhou J, Yang M, Yu L B and Cao Z L 2018 Quantum Inf. Process 17 158
22 Dorfman K E, Voronine D V, Mukamel S and Scully M O 2013 Proc. Natl. Acad. Sci. USA 110 2746
23 Creatore C, Parker M A, Emmott S and Chin A W 2013 Phys. Rev. Lett. 111 253601
24 Su S H, Luo X Q, Chen J C and Sun C P 2016 Europhys. Lett. 115 30002
25 Qin M, Shen H Z and Yi X X 2016 J. Chem. Phys. 44 125103
26 Panitchayangkoon G, Hayes D, Fransted K A, Caram J R, Harel E, Wen J, Blankenship R E and Engel G S 2010 Proc. Natl. Acad. Sci. USA 107 12766
27 Collini E, Wong C Y, Wilk K E, Curmi P M G, Brumer P and Scholes G D 2010 Nature 463 644
28 Huo P and Coker D F 2010 J. Chem. Phys. 133 184108
29 Christensson N, Kauffmann H F, Pullerits T and Manal T 2012 J. Phys. Chem. B 116 7449
30 Cardona A, Sedoud T, Cox N and William R A 2012 Biochim. Biophys. Acta-Bioenergetics 1817 26
31 Arp T B, Barlas Y, Aji V and Gabor N M 2015 Nano Lett. 16 7461
32 Qin M, Shen H Z, Zhao X L and Yi X X 2017 Phys. Rev. A 96 012125
33 Qin M, Shen H Z and Yi X X
34 Leonardo A P and Paul B 2011 J. Phys. Chem. Lett. 2 2728
35 Novoderezhkin V I, Dekker J P and Grondelle R Van 2007 Biophys. J. 93 1293
36 Elisabet R V, Stokkum I H M, Novoderezhkin V I, Dekker J P and Grondelle R V 2010 Biochemistry 49 4300
37 Novoderezhkin V I, Romero E, Dekker J P and Grondelle R V 2015 ChemPhysChem 12 681
38 Chen J Y and Zhao S C 2020 Eur. Phys. J. Plus 135 1
39 Chen H B, Lien J Y, Hwang C C and Chen Y N 2014 Phys. Rev. E 89 42147
40 Zhao S C and Wu Q X 2020 Superlattices and Microstructures 137 106329
41 Zhang Y T, Oh S, Alharbi F H, Engel G S and Kais S 2015 Phys. Chem. Chem. Phys. 17 5743
[1] Modulated spatial transmission signals in the photonic bandgap
Wenqi Xu(许文琪), Hui Wang(王慧), Daohong Xie(谢道鸿), Junling Che(车俊岭), and Yanpeng Zhang(张彦鹏). Chin. Phys. B, 2022, 31(12): 124209.
[2] High resolution spectroscopy of Rb in magnetic field by far-detuning electromagnetically induced transparency
Zi-Shan Xu(徐子珊), Han-Mu Wang(王汉睦), Ming-Hao Cai(蔡明皓), Shu-Hang You(游书航), and Hong-Ping Liu(刘红平). Chin. Phys. B, 2022, 31(12): 123201.
[3] Dual-function terahertz metasurface based on vanadium dioxide and graphene
Jiu-Sheng Li(李九生) and Zhe-Wen Li(黎哲文). Chin. Phys. B, 2022, 31(9): 094201.
[4] Manipulation of nonreciprocal unconventional photon blockade in a cavity-driven system composed of an asymmetrical cavity and two atoms with weak dipole-dipole interaction
Xinqin Zhang(张新琴), Xiuwen Xia(夏秀文), Jingping Xu(许静平), Haozhen Li(李浩珍), Zeyun Fu(傅泽云), and Yaping Yang(羊亚平). Chin. Phys. B, 2022, 31(7): 074204.
[5] Transient electromagnetically induced transparency spectroscopy of 87Rb atoms in buffer gas
Zi-Shan Xu(徐子珊), Han-Mu Wang(王汉睦), Zeng-Li Ba(巴曾立), and Hong-Ping Liu(刘红平). Chin. Phys. B, 2022, 31(7): 073201.
[6] Interrogation of optical Ramsey spectrum and stability study of an 87Sr optical lattice clock
Jing-Jing Xia(夏京京), Xiao-Tong Lu(卢晓同), and Hong Chang(常宏). Chin. Phys. B, 2022, 31(3): 034209.
[7] Majorana fermions induced fast- and slow-light in a hybrid semiconducting nanowire/superconductor device
Hua-Jun Chen(陈华俊), Peng-Jie Zhu(朱鹏杰), Yong-Lei Chen(陈咏雷), and Bao-Cheng Hou(侯宝成). Chin. Phys. B, 2022, 31(2): 027802.
[8] An analytical model for cross-Kerr nonlinearity in a four-level N-type atomic system with Doppler broadening
Dinh Xuan Khoa, Nguyen Huy Bang, Nguyen Le Thuy An, Nguyen Van Phu, and Le Van Doai. Chin. Phys. B, 2022, 31(2): 024201.
[9] Lattice plasmon mode excitation via near-field coupling
Yun Lin(林蕴), Shuo Shen(申烁), Xiang Gao(高祥), and Liancheng Wang(汪炼成). Chin. Phys. B, 2022, 31(1): 014214.
[10] High-efficiency asymmetric diffraction based on PT-antisymmetry in quantum dot molecules
Guangling Cheng(程广玲), Yongsheng Hu(胡永升), Wenxue Zhong(钟文学), and Aixi Chen(陈爱喜). Chin. Phys. B, 2022, 31(1): 014202.
[11] Actively tunable dual-broadband graphene-based terahertz metamaterial absorber
Dan Hu(胡丹), Tian-Hua Meng(孟田华), Hong-Yan Wang(王红燕), and Mai-Xia Fu(付麦霞). Chin. Phys. B, 2021, 30(12): 126101.
[12] A low noise, high fidelity cross phase modulation in multi-level atomic medium
Liangwei Wang(王亮伟), Jia Guan(关佳), Chengjie Zhu(朱成杰), Runbing Li(李润兵), and Jing Shi(石兢). Chin. Phys. B, 2021, 30(11): 114204.
[13] High-resolution three-dimensional atomic microscopy via double electromagnetically induced transparency
Abdul Wahab. Chin. Phys. B, 2021, 30(9): 094202.
[14] Highly tunable plasmon-induced transparency with Dirac semimetal metamaterials
Chunzhen Fan(范春珍), Peiwen Ren(任佩雯), Yuanlin Jia(贾渊琳), Shuangmei Zhu(朱双美), and Junqiao Wang(王俊俏). Chin. Phys. B, 2021, 30(9): 096103.
[15] Quantum storage of single photons with unknown arrival time and pulse shapes
Yu You(由玉), Gong-Wei Lin(林功伟), Ling-Juan Feng(封玲娟), Yue-Ping Niu(钮月萍), and Shang-Qing Gong(龚尚庆). Chin. Phys. B, 2021, 30(8): 084207.
No Suggested Reading articles found!