Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(4): 048506    DOI: 10.1088/1674-1056/abcf47
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Performance and stability-enhanced inorganic perovskite light-emitting devices by employing triton X-100

Ao Chen(陈翱)1,2, Peng Wang(王鹏)1, Tao Lin(林涛)1, Ran Liu(刘然)1, Bo Liu(刘波)1,†, Quan-Jun Li(李全军)1,‡, and Bing-Bing Liu(刘冰冰)1
1 State Key Laboratory of Superhard Materials, Jilin University, Changchun 130012, China; 2 Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China
Abstract  Significantly enhanced electroluminescence performance and stability of all-inorganic perovskite light-emitting devices (PeLEDs) have been achieved by adding triton X-100 into the perovskite precursors. The small perovskite grains arranged tightly and formed large grains as the triton X-100 were introduced. Thus the nonradiative defects originated from Pb atoms at the grain boundaries were highly passivated by triton X-100 and resulted in the promotion of PeLED performance, including a turn-on voltage of 3.2 V, a brightness of 63500 cd/m2, a current efficiency of 17.4 cd/A, and a prolonged lifetime of 2 h in air.
Keywords:  electroluminescence performance      stability      perovskite light-emitting devices (PeLEDs)      triton X-100  
Received:  03 September 2020      Revised:  04 October 2020      Accepted manuscript online:  01 December 2020
PACS:  85.60.-q (Optoelectronic devices)  
  85.60.Bt (Optoelectronic device characterization, design, and modeling)  
  85.60.Jb (Light-emitting devices)  
Fund: Project supported by the National Key Research and Development Program of China (Grant Nos. 2018YFA0305900 and 2016YFA0300404), the National Natural Science Foundation of China (Grant Nos. 11874172, 11374120, 11634004, and 51320105007), and the Science and Technology Innovative Research Project of Jilin University, China (Grant No. 2017TD-01).
Corresponding Authors:  Corresponding author. E-mail: jluliubo@jlu.edu.cn Corresponding author. E-mail: liquanjun@jlu.edu.cn   

Cite this article: 

Ao Chen(陈翱), Peng Wang(王鹏), Tao Lin(林涛), Ran Liu(刘然), Bo Liu(刘波), Quan-Jun Li(李全军), and Bing-Bing Liu(刘冰冰) Performance and stability-enhanced inorganic perovskite light-emitting devices by employing triton X-100 2021 Chin. Phys. B 30 048506

1 Quan L N, Rand B, Richard H F, Mhaisalkar S G, Lee T W and Sargent E H 2019 Chem. Rev. 119 7444
2 Lozano G 2018 J. Phys. Chem. Lett. 9 3987
3 Abdi-Jalebi M, Andaji-Garmaroudi Z, Cacovich S, Stavrakas C, Philippe B, Richter J M, Alsari M, Booker E P, Hutter E M, Pearson A J, Lilliu S, Savenije T J, Rensmo H, Divitini G, Ducati C, Friend R H and Stranks D 2018 Nature 555 497
4 Cao Y, Wang N N, Tian H, Guo J S, Wei Y Q, Chen H, Miao Y F, Zou W, Pan K, He Y R, Cao H, Ke Y, Xu M M, Wang Y, Yang M, Du Kai, Fu Z, Kong D C, Dai D X, Jin Y Z, Li G Q, Li H, Peng Q M, Wang J P and Huang W 2018 Nature 562 249
5 Lin K B, Xing J, Quan L N, de Arquer F P G, Gong X W, Lu J X, Xie L Q, Zhao W J, Zhang D, Yan C Z, Li W Q, Liu X Y, Lu Y, Kirman J, Sargent E H, Xiong Q H and Wei Z H 2018 Nature 562 245
6 Zhao X F and Tan Z K 2020 Nat. Photon. 14 215
7 Tan Z K, Moghaddam R S, Lai M L, Docampo P, Higler R, Deschler F, Price M, Sadhanala A, Pazos L M, Credgington D, Hanusch F, Bein T, Snaith H J and Friend R H 2014 Nat. Nanotech. 9 687
8 Cho H C, Jeong S H, Park M H, Kim Y H, Wolf Christoph, Lee C L, Heo J H, Sadhanala A, Myoung N S, Yoo S, Im S H, Friend R H and Lee T W 2015 Science 350 1222
9 Fang Z B, Chen W J, Shi Y L, Zhao J, Chu S L, Zhang J and Xiao Z G 2020 Adv. Funct. Mater. 30 1909754
10 Xu W D, Hu Q, Bai S, Bao C X, Miao Y F, Yuan Z C, Borzda T, Barker A J, Tyukalova E, Hu Z J, Kawecki M, Wang H Y, Yan Z, Liu X J, Shi Z B, Uvdal K, Fahlman M, Zhang W J, Duchamp M, Liu J M, Petrozza A, Wang J P, Liu L M, Huang W and Gao F 2019 Nat. Photon. 13 418
11 Zhang L Q, Yang X L, Jiang Q, Wang P Y, Yin Z G, Zhang X W, Tan H, Yang Y M, Wei M Y, Sutherland B R, Sargent E H and You J 2017 Nat. Commun. 8 15640
12 Wang R, Jia Y L, Zhang Y, Ma X J, Xu Q, Zhu Z X, Deng Y H, Xiong Z H and Gao C H 2020 Acta Phys. Sin. 69 038501 (in Chinese)
13 Song L, Guo X Y, Hu Y S, Lin J, Fan Y, Zhang N and Liu X Y 2018 Nanoscale 10 18315
14 Wang Y, Li X M, Sreejith S, Cao F, Wang Z, Stuparu M C, Zeng H and Sun H D 2016 Adv. Mater. 28 10637
15 Zhang X L, Xu B, Zhang J B, Gao Y, Zheng Y J, Wang K and Sun X W 2016 Adv. Funct. Mater. 26 4595
16 Zhou G J, Jia X F, Guo S Q, Molokeev M, Zhang J Y and Xia Z G 2019 J. Phys. Chem. Lett. 10 4706
17 Lee S, Jang C H, Nguyen T L, Kim S H, Lee K M, Chang K, Choi S S, Kwak S K, Woo H Y and Song M H 2019 Adv. Mater. 31 1900067
18 Song L, Guo X Y, Hu Y S, Lv Y, Lin J, Liu Z Q, Fan Y and Liu X Y 2017 J. Phys. Chem. Lett. 8 4148
19 Liu X, Guo X Y, Lv Y, Hu Y S, Fan Y, Lin J, Liu X M and Liu X Y 2018 Adv. Opt. Mater. 6 1801245
20 Lin H, Zhu L, Huang H, Reckmeier C J, Liang C J, Rogach Andrey L and Choy W C H 2016 Nanoscale 8 19846
21 Wang Y T, He J L, Yang Y C, Zhang Z K and Run L 2019 ACS Appl. Energ. Mater. 2 3419
22 Cheng L P, Huang J S, Shen Y,, Li G P, Liu X K, Li W, Wang Y H, Li Y Q, Jiang Y, Gao F, Lee C S and Tang J X 2019 Adv. Opt. Mater. 7 1801534
23 Park M H, Jeong S H, Seo H K, Wolf C, Kim Y H, Kim H, Byun J, Kim J S, Cho H and Lee T W 2017 Nano Energy 42 157
24 Li N, Song L, Jia Y H, Dong Y F, Xie F Y, Wang L D, Tao S X and Zhao N 2020 Adv. Mater. 32 1907786
25 Wang M, Tang J, Wang H, Zhang C, Zhao Y S and Yao J N 2020 Adv. Opt. Mater. 8 1901780
26 Liu Y Y, Xiao H and Goddard W A 2016 Nano Lett. 16 3335
[1] Continuous-wave optical enhancement cavity with 30-kW average power
Xing Liu(柳兴), Xin-Yi Lu(陆心怡), Huan Wang(王焕), Li-Xin Yan(颜立新), Ren-Kai Li(李任恺), Wen-Hui Huang(黄文会), Chuan-Xiang Tang(唐传祥), Ronic Chiche, and Fabian Zomer. Chin. Phys. B, 2023, 32(3): 034206.
[2] Modulational instability of a resonantly polariton condensate in discrete lattices
Wei Qi(漆伟), Xiao-Gang Guo(郭晓刚), Liang-Wei Dong(董亮伟), and Xiao-Fei Zhang(张晓斐). Chin. Phys. B, 2023, 32(3): 030502.
[3] Suppression of laser power error in a miniaturized atomic co-magnetometer based on split ratio optimization
Wei-Jia Zhang(张伟佳), Wen-Feng Fan(范文峰), Shi-Miao Fan(范时秒), and Wei Quan(全伟). Chin. Phys. B, 2023, 32(3): 030701.
[4] Improvement of coercivity thermal stability of sintered 2:17 SmCo permanent magnet by Nd doping
Chao-Zhong Wang(王朝中), Lei Liu(刘雷), Ying-Li Sun(孙颖莉), Jiang-Tao Zhao(赵江涛), Bo Zhou (周波), Si-Si Tu(涂思思), Chun-Guo Wang(王春国), Yong Ding(丁勇), and A-Ru Yan(闫阿儒). Chin. Phys. B, 2023, 32(2): 020704.
[5] Formation of nanobubbles generated by hydrate decomposition: A molecular dynamics study
Zilin Wang(王梓霖), Liang Yang(杨亮), Changsheng Liu(刘长生), and Shiwei Lin(林仕伟). Chin. Phys. B, 2023, 32(2): 023101.
[6] Ion migration in metal halide perovskite QLEDs and its inhibition
Yuhui Dong(董宇辉), Danni Yan(严丹妮), Shuai Yang(杨帅), Naiwei Wei(魏乃炜),Yousheng Zou(邹友生), and Haibo Zeng(曾海波). Chin. Phys. B, 2023, 32(1): 018507.
[7] Formation of quaternary all-d-metal Heusler alloy by Co doping fcc type Ni2MnV and mechanical grinding induced B2-fcc transformation
Lu Peng(彭璐), Qiangqiang Zhang(张强强), Na Wang(王娜), Zhonghao Xia(夏中昊), Yajiu Zhang(张亚九),Zhigang Wu(吴志刚), Enke Liu(刘恩克), and Zhuhong Liu(柳祝红). Chin. Phys. B, 2023, 32(1): 017102.
[8] Memristor hyperchaos in a generalized Kolmogorov-type system with extreme multistability
Xiaodong Jiao(焦晓东), Mingfeng Yuan(袁明峰), Jin Tao(陶金), Hao Sun(孙昊), Qinglin Sun(孙青林), and Zengqiang Chen(陈增强). Chin. Phys. B, 2023, 32(1): 010507.
[9] Parametric decay instabilities of lower hybrid waves on CFETR
Taotao Zhou(周涛涛), Nong Xiang(项农), Chunyun Gan(甘春芸), Guozhang Jia(贾国章), and Jiale Chen(陈佳乐). Chin. Phys. B, 2022, 31(9): 095201.
[10] Propagation and modulational instability of Rossby waves in stratified fluids
Xiao-Qian Yang(杨晓倩), En-Gui Fan(范恩贵), and Ning Zhang(张宁). Chin. Phys. B, 2022, 31(7): 070202.
[11] Kinetic theory of Jeans' gravitational instability in millicharged dark matter system
Hui Chen(陈辉), Wei-Heng Yang(杨伟恒), Yu-Zhen Xiong(熊玉珍), and San-Qiu Liu(刘三秋). Chin. Phys. B, 2022, 31(7): 070401.
[12] All polarization-maintaining Er:fiber-based optical frequency comb for frequency comparison of optical clocks
Pan Zhang(张攀), Yan-Yan Zhang(张颜艳), Ming-Kun Li(李铭坤), Bing-Jie Rao(饶冰洁), Lu-Lu Yan(闫露露), Fa-Xi Chen(陈法喜), Xiao-Fei Zhang(张晓斐), Qun-Feng Chen(陈群峰), Hai-Feng Jiang(姜海峰), and Shou-Gang Zhang(张首刚). Chin. Phys. B, 2022, 31(5): 054210.
[13] Stability and luminescence properties of CsPbBr3/CdSe/Al core-shell quantum dots
Heng Yao(姚恒), Anjiang Lu(陆安江), Zhongchen Bai(白忠臣), Jinguo Jiang(蒋劲国), and Shuijie Qin(秦水介). Chin. Phys. B, 2022, 31(4): 046106.
[14] Influence of various shapes of nanoparticles on unsteady stagnation-point flow of Cu-H2O nanofluid on a flat surface in a porous medium: A stability analysis
Astick Banerjee, Krishnendu Bhattacharyya, Sanat Kumar Mahato, and Ali J. Chamkha. Chin. Phys. B, 2022, 31(4): 044701.
[15] Interrogation of optical Ramsey spectrum and stability study of an 87Sr optical lattice clock
Jing-Jing Xia(夏京京), Xiao-Tong Lu(卢晓同), and Hong Chang(常宏). Chin. Phys. B, 2022, 31(3): 034209.
No Suggested Reading articles found!