Special Issue:
SPECIAL TOPIC — Quantum computation and quantum simulation
|
SPECIAL TOPIC—Quantum computation and quantum simulation |
Prev
Next
|
|
|
Micro-scale photon source in a hybrid cQED system |
Ming-Bo Chen(陈明博)1,2, Bao-Chuan Wang(王保传)1,2, Si-Si Gu(顾思思)1,2, Ting Lin(林霆)1,2, Hai-Ou Li(李海欧)1,2, Gang Cao(曹刚)1,2,†, and Guo-Ping Guo(郭国平)1,2,3,‡ |
1 Key Laboratory of Quantum Information, CAS, University of Science and Technology of China, Hefei 230026, China; 2 CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China; 3 Origin Quantum Computing Company Limited, Hefei 230026, China |
|
|
Abstract Coherent photon source is an important element that has been widely used in spectroscopy, imaging, detection, and teleportation in quantum optics. However, it is still a challenge to realize micro-scale coherent emitters in semiconductor systems. We report the observation of gain in a cavity-coupled GaAs double quantum dot system with a voltage bias across the device. By characterizing and analyzing the cavity responses to different quantum dot behaviors, we distinguish the microwave photon emission from the signal gain. This study provides a possibility to realize micro-scale amplifiers or coherent microwave photon sources in circuit quantum electrodynamics (cQED) hybrid systems.
|
Received: 20 November 2020
Revised: 30 December 2020
Accepted manuscript online: 03 February 2021
|
PACS:
|
85.35.Be
|
(Quantum well devices (quantum dots, quantum wires, etc.))
|
|
42.50.Pq
|
(Cavity quantum electrodynamics; micromasers)
|
|
42.60.Da
|
(Resonators, cavities, amplifiers, arrays, and rings)
|
|
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2016YFA0301700), the National Natural Science Foundation of China (Grant Nos. 61922074, 11674300, 61674132, 11625419, and 11804327), the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDB24030601), and the Anhui Initiative in Quantum Information Technologies, China (Grant No. AHY080000). |
Corresponding Authors:
†Corresponding author. E-mail: gcao@ustc.edu.cn ‡Corresponding author. E-mail: gpguo@ustc.edu.cn
|
Cite this article:
Ming-Bo Chen(陈明博), Bao-Chuan Wang(王保传), Si-Si Gu(顾思思), Ting Lin(林霆), Hai-Ou Li(李海欧), Gang Cao(曹刚), and Guo-Ping Guo(郭国平) Micro-scale photon source in a hybrid cQED system 2021 Chin. Phys. B 30 048507
|
1 Walls D F and Milburn G J2007 Quantum optics (Springer Science & Business Media) 2 Thompson R J, Rempe G and Kimble H J 1992 Phys. Rev. Lett. 68 1132 3 Brune M, Schmidt-Kaler F, Maali A, Dreyer J, Hagley E, Raimond J M and Haroche S 1996 Phys. Rev. Lett. 76 1800 4 Kubo Y, Ong F R, Bertet P, Vion D, Jacques V, Zheng D, Dréau A, Roch J F, Auffeves A, Jelezko F, Wrachtrup J, Barthe M F, Bergonzo P and Esteve D 2010 Phys. Rev. Lett. 105 140502 5 Tabuchi Y, Ishino S, Ishikawa T, Yamazaki R, Usami K and Nakamura Y 2014 Phys. Rev. Lett. 113 083603 6 Haken H1983 Laser Theory(Springer) 7 McKeever J, Boca A, Boozer A D, Buck J R and Kimble H J 2003 Nature 425 268 8 Xie Z G, Götzinger S, Fang W, Cao H and Solomon G S 2007 Phys. Rev. Lett. 98 117401 9 Nomura M, Kumagai N, Iwamoto S, Ota Y and Arakawa Y 2010 Nat. Phys. 6 279 10 Astafiev O, Inomata K, Niskanen A, Yamamoto T, Pashkin Y A, Nakamura Y and Tsai J 2007 Nature 449 588 11 Li Y Y, Liu J Q, Wang T, Liu F Q, Zhai S Q, Zhang J C, Zhou N, Wang L J, Liu S M and Wang Z G 2015 Chin. Phys. Lett. 32 104203 12 Vandersypen L M K, Bluhm H, Clarke J S, Dzurak A S, Ishihara R, Morello A, Reilly D J, Schreiber L R and Veldhorst M 2017 npj Quantum Information 3 34 13 Chen Y, Lin F L, Liang X, Jiang N Q 2019 Chin. Phys. Lett. 36 070302 14 Loss D and DiVincenzo D P 1998 Phys. Rev. A 57 120 15 Liu Y Y, Petersson K D, Stehlik J, Taylor J M and Petta J R 2014 Phys. Rev. Lett. 113 036801 16 Stockklauser A, Maisi VF, Basset J, Cujia K, Reichl C, Wegscheider W, Ihn T, Wallraff A and Ensslin K 2015 Phys. Rev. Lett. 115 046802 17 Samkharadze M, Zheng G, Kalhor N, Brousse D, Sammak A, Mendes U C, Blais A, Scappucci G and Vandersypen L M K 2018 Science 359 1123 18 Mi X, Benito M, Putz S, Zajac D M, Taylor J M, Burkard G and Petta J R 2018 Nature 555 599 19 Landig A J, Koski J V, Scarlino P, Mendes U C, Blais A, Reichl C, Wegscheider W, Wallraff A, Ensslin K and Ihn T 2018 Nature 560 179 20 Cubaynes T, Delbecq M R, Dartiailh M C, Assouly R, Desjardins M M, Contamin L C, Bruhat L E, Leghtas Z, Mallet F, Cottet A and Kontos T 2019 npj Quantum Information 5 47 21 Samkharadze N, Bruno A, Scarlino P, Zheng G, DiVincenzo D P, DiCarlo L and Vandersypen L M K 2016 Phys. Rev. Applied 5 044004 22 Wei X Y, Pan J Z, Lu Y P, Jiang L J, Li Z S, Lu S, Tu X C, Zhao Q Y, Jia X Q, Kang L, Chen J, Cao H C, Wang H B, Xu W W, Sun G Z and Wu P H 2020 Chin. Phys. B 29 128401 23 Zheng G, Samkharadze N,Noordam M L, Kalhor N, Brousse D, Sammak A, Scappucci G and Vandersypen L M K 2019 Nat. Nanotech. 14 742 24 Hartke T R, Liu Y Y, Gullans M J and Petta J R 2018 Phys. Rev. Lett. 120 097701 25 Landig A J, Koski J V, Scarlino P, Reichl C, Wegscheider W, Wallraff A, Ensslin K and Ihn T 2019 Phys. Rev. Lett. 122 213601 26 Gullans M J, Liu Y Y, Stehlik J, Petta J R and Taylor J M 2015 Phys. Rev. Lett. 114 196802 28 Liu Y Y, Stehlik J, Eichler C, Gullans M J, Taylor J M and Petta J R 2015 Science 347 285 29 Stockklauser A, Scarlino P, Koski JV, Gasparinetti S, Andersen CK, Reichl C, Wegscheider W, Ihn T, Ensslin K and Wallraff A 2017 Phys. Rev. X 7 011030 30 Viennot J J, Dartiailh M C, Cottet A and Kontos T 2015 Science 349 408 31 Wang B, Lin T, Li H, Gu S, Chen M, Guo G, Jiang H, Hu X, Cao G and Guo G 2021 Science Bulletin 66 332 32 Frey T, Leek P J, Beck M, Faist J, Wallraff A, Ensslin K, Ihn T and Büttiker M 2012 Phys. Rev. B 86 115303 33 Li Y, Li S X, Gao F, Li H O, Xu G, Wang K, Liu H, Cao G, Xiao M, Wang T, Zhang J J and Guo G P 2018 J. Appl. Phys. 123 174305 34 Pompeo N, Torokhtii K, Leccese F, Scorza A, Sciuto S and Silva E IEEE International Instrumentation and Measurement Technology Conference, May 22-25, 2017, Turin, Italy, p. 1 35 Deng C, Otto M and Lupascu A 2013 J. Appl. Phys. 114 054504 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|