Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(3): 037601    DOI: 10.1088/1674-1056/abc3b0
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Determination of charge-compensated C3v (II) centers for Er 3+ ions in CdF2 and CaF2 crystals

Rui-Peng Chai(柴瑞鹏)1,†, Dan-Hui Hao(郝丹辉)2, Dang-Li Gao(高当丽)1, and Qing Pang(庞庆)1
1 College of Science, Xi'an University of Architecture and Technology, Xi'an 710055, China; 2 Xi'an University of Architecture and Technology Huaqing College, Xi'an 710043, China
Abstract  A unified theoretical method is established to determine the charge-compensated C3v (II) centers of Er3+ ions in CdF2 and CaF2 crystals by simulating the electron paramagnetic resonance (EPR) parameters and Stark energy levels. The potential (Er3+-F--$\mathrm{O}_\mathrm4^\mathrm2-$) and (Er3+-$\mathrm{F}_\mathrm7^\mathrm-$-O2-) structures for the C3v (II) centers of Er3+ ions in CdF2 and CaF2 crystals are checked by diagonalizing 364×364 complete energy matrices in the scheme of superposition model. Our studies indicate that the C3v (II) centers of Er3+ ions in CdF2 and CaF2 may be ascribed to the local (Er3+-F--$\mathrm{O}_\mathrm4^\mathrm2-$) structure, where the upper ligand ion F- undergoes an off-center displacement by ∆ Z≈ 0.3 Å for CdF2 and ∆ Z≈ 0.29 Å for the CaF2 along the C3 axis. Meanwhile, a local compressed distortion of the (ErFO4)6- cluster is expected to be ∆ R≈ 0.07 Å for CdF2:Er3+ and ∆ R≈ 0.079 Å for CaF2:Er3+. The considerable g-factor anisotropy for Er3+ ions in each of both crystals is explained reasonably by the obtained local parameters. Furthermore, our studies show that a stronger covalent effect exists in the C3v (II) center for Er3+ in CaF2 or CaF2, which may be due to the stronger electrostatic interaction and closer distance between the central Er3+ ion and ligand O2- with the (Er3+-F--$\mathrm{O}_\mathrm4^\mathrm2-$) structure.
Keywords:  EPR parameters      distorted local structure      covalent effect      optical properties  
Received:  26 August 2020      Revised:  21 October 2020      Accepted manuscript online:  22 October 2020
PACS:  76.30.-v (Electron paramagnetic resonance and relaxation)  
  75.10.Dg (Crystal-field theory and spin Hamiltonians)  
  31.15.-p (Calculations and mathematical techniques in atomic and molecular physics)  
  76.30.Kg (Rare-earth ions and impurities)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 1170513), the Natural Science Foundation of Shaanxi Province, China (Grant No. Z20200051), the Foundation of the Education Department of Shaanxi Provincial Government, China (Grant No. 16JK1461), and the Scientific Research Foundation of Xi'an University of Architecture and Technology, China (Grant No. QN1729).
Corresponding Authors:  Corresponding author. E-mail: chairuipeng2005@163.com   

Cite this article: 

Rui-Peng Chai(柴瑞鹏), Dan-Hui Hao(郝丹辉), Dang-Li Gao(高当丽), and Qing Pang(庞庆) Determination of charge-compensated C3v (II) centers for Er 3+ ions in CdF2 and CaF2 crystals 2021 Chin. Phys. B 30 037601

1 Struebing C, Chong J Y, Lee G, Zavala M, Erickson A, Ding Y, Wang C L, Diawara Y, Engles R, Wagner B and Kang Z T 2016 Appl. Phys. Lett. 108 153106
2 Jacobsohn L G, Mcpherson C L, Sprinkle K B, Yukihara E G, Devol T A and Ballato J 2011 Appl. Phys. Lett. 99 113111
3 Ivanovskikh K V, Hughes-Currie R B, Reid M F, Wells J P R, Sokolov N S and Reeves R J 2016 J. Appl. Phys. 119 104305
4 Cortelletti P, Pedroni M, Boschi F, Pin S, Ghigna P, Canton P, Vetrone F and Speghini A. 2018 Cryst. Growth Des. 18 686
5 Su F H, Chen W, Ding K and Li G H 2008 J. Phys. Chem. A 112 4772
6 Barandiar\'an Z and Seijo L 2015 J. Chem. Phys. 143 144702
7 Rakov N and Maciel G S 2017 J. Appl. Phys. 121 113103
8 Yang Z, Guo C F, Chen Y Q, Li L, Li T and Jeong J H 2014 Chin. Phys. B 23 064212
9 Hu T J, Cui X Y, Wang J S, Zhang J K, Li X F, Yang J H and Gao C X 2018 Chin. Phys. B 27 016401
10 Zhang F, Zhang H N, Liu D H, Liu J, Ma F K, Jiang D P, Pang S Y, Su L B and Xu J 2017 Chin. Phys. B 26 024205
11 Lopes C C, Barros V S M, Asfora V K, Yamamoto, Khoury H J and Guzzo P 2018 J. Lumin. 199 266
12 Li W W, Huang H J, Mei B C, Wang C, Liu J, Wang S Z, Jiang D P and Su L B 2020 Ceram. Int. 46 19530
13 Wang R, Yuan M H, Zhang C F, Wang H Y and Xu X J 2018 Opt. Mater. 79 403
14 Balabhadra S, Reid M F, Golovko V and Wells J P R 2020 J. Alloys Compd. 834 155165
15 Bendjedaa F, Diaf M, Boulma E, Djellab S, Guerbous L and Jouart J P 2017 J. Alloys Compd. 693 48
16 Souza W S, Domingues R O, Bueno L A, da Costa E B and Gouveia A S 2013 J. Lumin. 144 87
17 Zhang C M, Hou Z Y, Chai R T, Cheng Z Y, Xu Z H, Li C X, Huang L and Lin J 2010 J. Phys. Chem. C 114 6928
18 Ma C S, Jiao Q, Li L J, Zhou D C, Yang Z W, Song Z G and Qiu J B 2014 Chin. Phys. B 23 057802
19 Hu Y B, Qiu J B, Zhou D C, Song Z G, Yang Z W, Wang R F, Jiao Q and Zhou D L 2014 Chin. Phys. B 23 024205
20 Lian H Z, Liu J, Ye Z R and Shi C S 2004 Chem. Phys. Lett. 386 291
21 Lie L, Xie B X, Li Y Y, Zhang J J and Xu S Q 2017 J. Lumin. 190 462
22 Eftimie E L A, Avram C N, Brik M G, Chernyshev V A and Avram N M 2019 J. Lumin. 214 116577
23 Aminov L K, Gafurov M R, Kurkin I N, Malkin B Z and Rodionov A A 2018 Phys. Solid State 60 912
24 Chehaidar A and Hirsch L 2000 Eur. Phys. J. A 12 79
25 Le\'sniak K 1990 J. Phys.: Condens. Matter 2 5563
26 Leung A F 1973 J. Phys. C: Solid State Phys. 6 2234
27 Chai R P, Kuang X Y, Liang L and Yu G H 2015 J. Phys. Chem. Solids 80 1
28 Chai R P, Hao D H, Kuang X Y and Liang L 2015 Spectrochim. Acta Part A 150 829
29 Chai R P, Kuang X Y, Duan M L and Zhang C X 2010 Spectrochim. Acta Part A 77 253
30 Chai R P, Li L, Liang L and Pang Q 2016 Chin. Phys. B 25 077601
31 Ranon U and Low W 1963 Phys. Rev. 132 1609
32 Ensign T C and Byer N E 1973 Phys. Rev. B 7 907
33 Tallant D R and Wright J C 1975 J. Chem. Phys. 63 2074
34 Mho S and Wright J C 1984 J. Chem. Phys. 81 1421
35 Cockroft N J, Thompson D, Jones G D and Syme R W G 1987 J. Chem. Phys. 86 521
36 Cockroft N J, Jones G D and Syme R W G 1990 J. Chem. Phys. 92 2166
37 Miller M P and Wright J C 1978 J. Chem. Phys. 68 1548
38 Reddy T Rs, Davies E R, Baker J M, Chambers D N, Newman R C and \"Ozbay B 1971 Phys. Lett. A 36 231
39 Chambers D N, Newman R C 1971 J. Phys. C: Solid State Phys. 4 3015
40 Chambers D N, Newman R C 1971 J. Phys. C: Solid State Phys. 5 997
41 Li H, Kuang X Y, Mao A J and Li C G 2013 Spectrochim. Acta Part A. 102 169
42 Carnall W T, Goodman G L, Rajnak K and Rana R S 1989 J. Chem. Phys. 90 3443
43 Liu G K and Jacquier B2005 Spectroscopic Properties of Rare Earths in Optical Materials (Beijing: Tsinghua University Press and Berlin, Heidelberg: Springer-Verlag) pp. 11-37
44 Wybourne B G1965 Spectroscopic Properties of Rare Earths (New York: John Wiley & Sons, Inc.) p. 39
45 Newman D J and Ng B 1989 Rep. Prog. Phys. 52 699
46 Newman D J and B Ng2000 Crystal Field Handbook (Cambridge: Cambridge University Press) pp. 6-43
47 Abragam A and Bleaney B1986 Electron Paramagnetic Resonance of Transition Ions(New York: Dover Publications, Inc.) pp. 277-341
48 Lea K R, Leask M J M and Wolf W P 88 1962 J. Phys. Chem. Solids 23 1381
49 Chai R P, Kuang X Y, Li C G and Zhao Y R 2011 Chem. Phys. Lett. 505 65
50 Jørgensen C K1962 Absorption Spectra and Chemical Bonding in Complexes (Oxford: Pergamon Press) p. 296
[1] Optical and electrical properties of BaSnO3 and In2O3 mixed transparent conductive films deposited by filtered cathodic vacuum arc technique at room temperature
Jian-Ke Yao(姚建可) and Wen-Sen Zhong(钟文森). Chin. Phys. B, 2023, 32(1): 018101.
[2] Nonlinear optical properties in n-type quadruple δ-doped GaAs quantum wells
Humberto Noverola-Gamas, Luis Manuel Gaggero-Sager, and Outmane Oubram. Chin. Phys. B, 2022, 31(4): 044203.
[3] Tunable electronic properties of GaS-SnS2 heterostructure by strain and electric field
Da-Hua Ren(任达华), Qiang Li(李强), Kai Qian(钱楷), and Xing-Yi Tan(谭兴毅). Chin. Phys. B, 2022, 31(4): 047102.
[4] Tailoring the optical and magnetic properties of La-BaM hexaferrites by Ni substitution
Hafiz T. Ali, M. Ramzan, M Imran Arshad, Nicola A. Morley, M. Hassan Abbas, Mohammad Yusuf, Atta Ur Rehman, Khalid Mahmood, Adnan Ali, Nasir Amin, and M. Ajaz-un-Nabi. Chin. Phys. B, 2022, 31(2): 027502.
[5] First-principles study of structural and opto-electronic characteristics of ultra-thin amorphous carbon films
Xiao-Yan Liu(刘晓艳), Lei Wang(王磊), and Yi Tong(童祎). Chin. Phys. B, 2022, 31(1): 016102.
[6] Stability of liquid crystal systems doped with γ-Fe2O3 nanoparticles
Xu Zhang(张旭), Ningning Liu(刘宁宁), Zongyuan Tang(唐宗元), Yingning Miao(缪应宁), Xiangshen Meng(孟祥申), Zhenghong He(何正红), Jian Li(李建), Minglei Cai(蔡明雷), Tongzhou Zhao(赵桐州), Changyong Yang(杨长勇), Hongyu Xing(邢红玉), and Wenjiang Ye(叶文江). Chin. Phys. B, 2021, 30(9): 096101.
[7] Analysis of properties of krypton ion-implanted Zn-polar ZnO thin films
Qing-Fen Jiang(姜清芬), Jie Lian(连洁), Min-Ju Ying(英敏菊), Ming-Yang Wei(魏铭洋), Chen-Lin Wang(王宸琳), and Yu Zhang(张裕). Chin. Phys. B, 2021, 30(9): 097801.
[8] Strain-tunable electronic and optical properties of h-BN/BC3 heterostructure with enhanced electron mobility
Zhao-Yong Jiao(焦照勇), Yi-Ran Wang(王怡然), Yong-Liang Guo(郭永亮), and Shu-Hong Ma(马淑红). Chin. Phys. B, 2021, 30(7): 076801.
[9] Gas sensor using gold doped copper oxide nanostructured thin films as modified cladding fiber
Hussein T. Salloom, Rushdi I. Jasim, Nadir Fadhil Habubi, Sami Salman Chiad, M Jadan, and Jihad S. Addasi. Chin. Phys. B, 2021, 30(6): 068505.
[10] Low-dimensional phases engineering for improving the emission efficiency and stability of quasi-2D perovskite films
Yue Wang(王月), Zhuang-Zhuang Ma(马壮壮), Ying Li(李营), Fei Zhang(张飞), Xu Chen(陈旭), and Zhi-Feng Shi (史志锋). Chin. Phys. B, 2021, 30(6): 067802.
[11] Effects of substitution of group-V atoms for carbon or silicon atoms on optical properties of silicon carbide nanotubes
Ying-Ying Yang(杨莹莹), Pei Gong(龚裴), Wan-Duo Ma(马婉铎), Rui Hao(郝锐), and Xiao-Yong Fang(房晓勇). Chin. Phys. B, 2021, 30(6): 067803.
[12] Optical properties of several ternary nanostructures
Xiao-Long Tang(唐小龙), Xin-Lu Cheng(程新路), Hua-Liang Cao(曹华亮), and Hua-Dong Zeng(曾华东). Chin. Phys. B, 2021, 30(1): 017803.
[13] Structural and optical characteristic features of RF sputtered CdS/ZnO thin films
Ateyyah M Al-Baradi, Fatimah A Altowairqi, A A Atta, Ali Badawi, Saud A Algarni, Abdulraheem S A Almalki, A M Hassanien, A Alodhayb, A M Kamal, M M El-Nahass. Chin. Phys. B, 2020, 29(8): 080702.
[14] Effects of built-in electric field and donor impurity on linear and nonlinear optical properties of wurtzite InxGa1-xN/GaN nanostructures
Xiao-Chen Yang(杨晓晨), Yan Xing(邢雁). Chin. Phys. B, 2020, 29(8): 087802.
[15] Ab initio study of structural, electronic, thermo-elastic and optical properties of Pt3Zr intermetallic compound
Wahiba Metiri, Khaled Cheikh. Chin. Phys. B, 2020, 29(4): 047101.
No Suggested Reading articles found!