|
|
Enhanced spin-orbit torque efficiency in Pt100-xNix alloy based magnetic bilayer |
Congli He(何聪丽)1,†, Qingqiang Chen(陈庆强)1,†, Shipeng Shen(申世鹏)1, Jinwu Wei(魏晋武)2, Hongjun Xu(许洪军)2, Yunchi Zhao(赵云驰)2, Guoqiang Yu(于国强)2, and Shouguo Wang(王守国)1,‡ |
1 Institute of Advanced Materials, Beijing Normal University, Beijing 100875, China; 2 Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China |
|
|
Abstract The binary alloy/ferromagnetic metal heterostructure has drawn extensive attention in the research field of spin-orbit torque (SOT) due to the potential enhancement of SOT efficiency via composition engineering. In this work, the magnetic properties and SOT efficiency in the Pt100-xNix/Ni78Fe22 bilayers were investigated via the spin-torque ferromagnetic resonance (ST-FMR) technique. The effective magnetic anisotropy field and effective damping constant extracted by analyzing the ST-FMR spectra show a weak dependence on the Ni concentration. The effective spin-mixing conductance of $8.40\times 10^14 \Omega ^-1\cdot\rm m^-2$ and the interfacial spin transparency T in of 0.59 were obtained for the sample of Pt70Ni30/NiFe bilayer. More interestingly, the SOT efficiency that is carefully extracted from the angular dependence of ST-FMR spectra shows a nonmonotonic dependence on the Ni concentration, which reaches the maximum at x = 18. The enhancement of the SOT efficiency by alloying the Ni with Pt shows potential in lowering the critical switching current. Moreover, alloying relatively cheaper Ni with Pt may promote to reduce the cost of SOT devices.
|
Received: 13 January 2021
Revised: 05 February 2021
Accepted manuscript online: 08 February 2021
|
PACS:
|
75.47.-m
|
(Magnetotransport phenomena; materials for magnetotransport)
|
|
85.75.-d
|
(Magnetoelectronics; spintronics: devices exploiting spin polarized transport or integrated magnetic fields)
|
|
71.70.Ej
|
(Spin-orbit coupling, Zeeman and Stark splitting, Jahn-Teller effect)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 51901025 and 51625101), the Fundamental Research Funds for the Central Universities, China (Grant No. 310421101), and the Beijing Natural Science Foundation, China (Grant No. Z190007). |
Corresponding Authors:
†These authors contributed equally. §Corresponding author. E-mail: sgwang@bnu.edu.cn
|
Cite this article:
Congli He(何聪丽), Qingqiang Chen(陈庆强), Shipeng Shen(申世鹏), Jinwu Wei(魏晋武), Hongjun Xu(许洪军), Yunchi Zhao(赵云驰), Guoqiang Yu(于国强), and Shouguo Wang(王守国) Enhanced spin-orbit torque efficiency in Pt100-xNix alloy based magnetic bilayer 2021 Chin. Phys. B 30 037503
|
1 Miron I M, Garello K, Gaudin G, Zermatten P J, Costache M V, Auffret S, Bandiera S, Rodmacq B, Schuhl A and Gambardella P 2011 Nature 476 189 2 Liu L Q, Pai C F, Li Y, Tseng H W, Ralph D C and Buhrman R A 2012 Science 336 555 3 Pai C F, Liu L Q, Li Y, Tseng H W, Ralph D C and Buhrman R A 2012 Appl. Phys. Lett. 101 122404 4 Yu G Q, Upadhyaya P, Fan Y B, Alzate J G, Jiang W J, Wong K L, Takei S, Bender S A, Chang L T, Jiang Y, Lang M R, Tang J S, Wang Y, Tserkovnyak Y, Amiri P K and Wang K L 2014 Nat. Nanotechnol. 9 548 5 Qiu X, Shi Z, Fan W, Zhou S and Yang H 2018 Adv. Mater. 30 1705699 6 Li Y, Edmonds K W, Liu X, Zheng H and Wang K 2019 Advanced Quantum Technologies 2 1800052 7 Song C, Zhang R, Liao L, Zhou Y, Zhou X, Chen R, You Y, Chen X and Pan F 2020 Progress in Materials Science 100761 (in press) 8 Zheng Z Y, Zhang Y, Zhu D Q, Zhang K, Feng X Q, He Y, Chen L, Zhang Z Z, Liu D J, Zhang Y G, Amiri P K A and Zhao W S 2020 Chin. Phys. B 29 078505 9 Demidov V E, Urazhdin S, Ulrichs H, Tiberkevich V, Slavin A, Baither D, Schmitz G and Demokritov S O 2012 Nat. Mater. 11 1028 10 Liu R H, Lim W L and Urazhdin S 2013 Phys. Rev. Lett. 110 147601 11 Duan Z, Smith A, Yang L, Youngblood B, Lindner J, Demidov V E, Demokritov S O and Krivorotov I N 2014 Nat. Commun. 5 5616 12 Awad A A, Durrenfeld P, Houshang A, Dvornik M, Iacocca E, Dumas R K and Akerman J 2017 Nat. Phys. 13 292 13 Emori S, Bauer U, Ahn S M, Martinez E and Beach G S D 2013 Nat. Mater. 12 611 14 Ryu K S, Thomas L, Yang S H and Parkin S 2013 Nat. Nanotechnol. 8 527 15 Yu G Q, Upadhyaya P, Wong K L, Jiang W J, Alzate J G, Tang J S, Amiri P K and Wang K L 2014 Phys. Rev. B 89 104421 16 Jiang W, Upadhyaya P, Zhang W, Yu G, Jungfleisch M, Fradin F, Pearson J, Tserkovnyak Y, Wang K, Heinonen O, te Velthuis S and Hoffmann A 2015 Science 349 283 17 Yu G Q, Upadhyaya P, Li X, Li W Y, Kim S K, Fan Y B, Wong K L, Tserkovnyak Y, Amiri P K and Wang K L 2016 Nano Lett. 16 1981 18 Woo S, Litzius K, Kruger B, Im M, Caretta L, Richter K, Mann M, Krone A, Reeve R, Weigand M, Agrawal P, Lemesh I, Mawass M, Fischer P, Klaui M and Beach G 2016 Nat. Mater. 15 501 19 Yu G, Upadhyaya P, Shao Q, Wu H, Yin G, Li X, He C, Jiang W, Han X, Amiri P K and Wang K L 2017 Nano Lett. 17 261 20 Shu-Fa Li T Z 2020 Chin. Phys. B 29 087102 21 Tian Y Y, Wang S H, Li G, Li H, Li S Q, Zhao Y, Cui X M, Wang J Y, Zou L K and Jin K X 2020 Chin. Phys. B 29 117504 22 Nguyen M H, Zhao M N, Ralph D C and Buhrman R A 2016 Appl. Phys. Lett. 108 242407 23 Zhu L, Ralph D C and Buhrman R A 2018 Phys. Rev. Appl. 10 031001 24 Hu C Y and Pai C F 2020 Advanced Quantum Technologies 3 2000024 25 Obstbaum M, Decker M, Greitner A K, Haertinger M, Meier T N G, Kronseder M, Chadova K, Wimmer S, Kodderitzsch D, Ebert H and Back C H 2016 Phys. Rev. Lett. 117 167204 26 Shu X, Zhou J, Deng J, Lin W, Yu J, Liu L, Zhou C, Yang P and Chen J 2019 Phys. Rev. Mater. 3 114410 27 Chen T Y, Wu C T, Yen H W and Pai C F 2017 Phys. Rev. B 96 104434 28 Demasius K-U, Phung T, Zhang W, Hughes B P, Yang S H, Kellock A, Han W, Pushp A and Parkin S S P 2016 Nat. Commun. 7 10644 29 Sinova J, Valenzuela S O, Wunderlich J, Back C H and Jungwirth T 2015 Rev. Mod. Phys. 87 1213 30 Nguyen M H, Ralph D C and Buhrman R A 2016 Phys. Rev. Lett. 116 126601 31 Ou Y, Ralph D C and Buhrman R A 2018 Phys. Rev. Lett. 120 097203 32 Keller M W, Gerace K S, Arora M, Delczeg-Czirjak E K, Shaw J M and Silva T J 2019 Phys. Rev. B 99 214411 33 Varotto S, Cosset-Ch\'eneau M, Gr\`ezes C, Fu Y, Warin P, Brenac A, Jacquot J F, Gambarelli S, Rinaldi C, Baltz V, Attan\'e J P, Vila L and No\"el P 2020 Phys. Rev. Lett. 125 267204 34 Hibino Y, Taniguchi T, Yakushiji K, Fukushima A, Kubota H and Yuasa S 2020 Phys. Rev. Appl. 14 064056 35 Naito T, Hirashima D S and Kontani H 2010 Phys. Rev. B 81 195111 36 Jo D, Go D and Lee H W 2018 Phys. Rev. B 98 214405 37 Liu L Q, Moriyama T, Ralph D C and Buhrman R A 2011 Phys. Rev. Lett. 106 036601 38 He C L, Navabi A, Shao Q M, Yu G Q, Di Wu D, Zhu W H, Zheng C, Li X, He Q L, Razavi S A, Wong K L, Zhang Z Z, Amiri P K and Wang K L 2016 Appl. Phys. Lett. 109 202404 39 He C L, Yu G Q, Grezes C, Feng J F, Zhao Z, Razavi S A, Shao Q M, Navabi A, Li X, He Q L, Li M Y, Zhang J, Wong K L, Wei D, Zhang G Y, Han X F, Amiri P K and Wang K L 2018 Phys. Rev. Appl. 10 034067 40 Wei J W, He C L, Wang X, Xu H J, Liu Y Z, Guang Y, Wan C H, Feng J F, Yu G Q and Han X F 2020 Phys. Rev. Appl. 13 034041 41 Zhu L J, Ralph D C and Buhrman R A 2019 Phys. Rev. Lett. 123 057203 42 Ando K, Takahashi S, Ieda J, Kajiwara Y, Nakayama H, Yoshino T, Harii K, Fujikawa Y, Matsuo M, Maekawa S and Saitoh E 2011 J. Appl. Phys. 109 103913 43 Shao Q M, Tang C, Yu G Q, Navabi A, Wu H, He C L, Li J X, Upadhyaya P, Zhang P, Razavi S A, He Q L, Liu Y W, Yang P, Kim S K, Zheng C, Liu Y Z, Pan L, Lake R K, Han X F, Tserkovnyak Y, Shi J and Wang K L 2018 Nat. Commun. 9 3612 44 Pai C F, Ou Y X, Vilela-Leao L H, Ralph D C and Buhrman R A 2015 Phys. Rev. B 92 064426 45 Nan T X, Emori S, Boone C T, Wang X J, Oxholm T M, Jones J G, Howe B M, Brown G J and Sun N X 2015 Phys. Rev. B 91 214416 46 Wang B, Guo Y H, Han B, Yan Z, Wang T, Yang D Z, Fan X L and Cao J W 2020 Appl. Phys. Lett. 116 222402 47 Sagasta E, Omori Y, Isasa M, Gradhand M, Hueso L E, Niimi Y, Otani Y and Casanova F 2016 Phys. Rev. B 94 060412 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|