CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Angular control of multi-mode resonance frequencies in obliquely deposited CoZr thin films with rotatable stripe domains |
Chao-Zhong Li(李超众), Chang-Jun Jiang(蒋长军), and Guo-Zhi Chai(柴国志)† |
1 Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education, Lanzhou University, Lanzhou 730000, China |
|
|
Abstract We investigate the angular-dependent multi-mode resonance frequencies in CoZr magnetic thin films with a rotatable stripe domain structure. A variable range of multi-mode resonance frequencies from 1.86 GHz to 4.80 GHz is achieved by pre-magnetizing the CoZr films along different azimuth directions, which can be ascribed to the competition between the uniaxial anisotropy caused by the oblique deposition and the rotatable anisotropy induced by the rotatable stripe domain. Furthermore, the regulating range of resonance frequency for the CoZr film can be adjusted by changing the oblique deposition angle. Our results might be beneficial for the applications of magnetic thin films in microwave devices.
|
Received: 12 August 2020
Revised: 11 November 2020
Accepted manuscript online: 23 November 2020
|
PACS:
|
75.70.Ak
|
(Magnetic properties of monolayers and thin films)
|
|
75.30.Gw
|
(Magnetic anisotropy)
|
|
76.50.+g
|
(Ferromagnetic, antiferromagnetic, and ferrimagnetic resonances; spin-wave resonance)
|
|
75.78.Fg
|
(Dynamics of domain structures)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 51871117 and 51671099), the Program for Changjiang Scholars and Innovative Research Team in University, China (Grant No. IRT-16R35), and the Gansu Provincial Science Foundation for Distinguished Young Scholars, China (Grant No. 20JR10RA649). |
Corresponding Authors:
†Corresponding author. E-mail: chaigzh@lzu.edu.cn
|
Cite this article:
Chao-Zhong Li(李超众), Chang-Jun Jiang(蒋长军), and Guo-Zhi Chai(柴国志) Angular control of multi-mode resonance frequencies in obliquely deposited CoZr thin films with rotatable stripe domains 2021 Chin. Phys. B 30 037502
|
1 Sun N X and Srinivasan G 2012 Spin 2 1240004 3 Liu M and Sun N X 2014 Phil. Trans. R. Soc. A 372 20120439 4 Meng H, Zhang T L and Jiang C B 2012 J. Magn. Magn. Mater. 324 1933 5 Suhl H 1957 Phys. Chem. Solids. 1 209 6 Kittel C 1947 Phys. Rev. 71 270 7 Li W D, Kitakami O and Shimada Y 1998 J. Appl. Phys. 83 6661 8 Cao X Q, Li S D, Cai Z Y, Du H L, Xu J, Xue Q, Gao X Y and Xie S M 2014 Chin. Phys. B 23 086201 9 Li S D, Cai Z Y, Xu J, Cao X Q, Du H L, Xue Q, Gao X Y and Xie S M 2014 Chin. Phys. B 23 106201 10 McCord J, Kaltofen R, Schmidt O G and Schultz L 2008 Appl. Phys. Lett. 92 162506 11 Stenning G B G, Shelford L R, Cavill S A, Hoffmann F, Haertinger M, Hesjedal T, Woltersdorf G, Bowden G J, Gregory S A, Back C H, Groot P A J and Laan G van der 2015 New J. Phys. 17 013019 12 Gomez J, Weston J L and Butera A 2007 Phys. Rev. B 76 184416 13 Li S D, Li Q, Xu J, Yan S S, Miao G X, Kang S S, Dai Y Y, Jiao J Q and L\"u Y G 2016 Adv. Funct. Mater. 26 3738 14 Okamoto S, Kikuchi N, Kitakami O, Miyazaki T, Shimada Y and Fukamichi K 2002 Phys. Rev. B 66 024413 15 Wang W F, Chai G Z and Xue D S 2017 J. Phys. D: Appl. Phys. 50 365003 16 Chai G Z, Yang Y C, Zhu J, Lin M, Sui W B, Guo D W, Li X L and Xue D S 2010 Appl. Phys. Lett. 96 012505 17 Chai G Z, Wang Z L, Wang G X, Sui W B and Xue D S 2011 IEEE Trans. Magn. 47 3115 18 Wang C L, Zhang S H, Li S D, Du H L, Zhao G X and Cao D R 2020 Chin. Phys. B 29 046202 19 Fu Y, Yang Z, Miyao T, Matsumoto M, Liu X X and Morisako A 2006 Mater. Sci. Eng. B 133 61 20 Dai G H, Xing X G, Shen Y and Deng X H 2020 J. Phys. D: Appl. Phys. 53 055001 21 Shi Z P, Liu X M and Li S D 2017 Chin. Phys. B 26 097601 22 Chai G Z, Phuoc N N and Ong C K 2014 Appl. Phys. Express 7 063001 23 Prosen R J, Holmen J O and Gran B E1961 J. Appl. Phys. 32 S91 24 Stiles M D and McMichael R D 1999 Phys. Rev. B 59 3722 25 McCord J, Mattheis R and Elefant D 2004 Phys. Rev. B 70 094420 26 Hillebrands B 1988 Phys. Rev. B 37 9885 27 Kalinikos B A and Slavin A N 1986 J. Phys. C: Solid State Phys. 19 7013 28 Lin F Q, Zhang S H, Zhao G X, Li H F, Zong W H and Li S D 2020 Chin. Phys. B 29 067601 29 Chen Y, Fan X, Zhou Y, Xie Y, Wu J, Wang T, Chui S T and Xiao J Q 2015 Adv. Mater. 27 1351 30 Wang W Q, Wang F L, Cao C M, Li P P, Yao J L and Jiang C J 2018 J. Phys. D: Appl. Phys. 51 145002 31 Youssef J B, Vukadinovic N, Billet D and Labrune M 2004 Phys. Rev. B 69 174402 32 Soh W T, Phuoc N N, Tan C Y and Ong C K 2013 J. Appl. Phys. 114 053908 33 Vukadinovic N, Vacus O, Labrune M, Acher O and Pain D 2000 Phys. Rev. Lett. 85 2817 34 Ma H G, Li C Y, Wang W F and Chai G Z 2018 J. Phys. D: Appl. Phys. 51 285004 35 Leaf G, Kaper H, Yan M, Novosad V, Vavassori P, Camley R E and Grimsditch M 2006 Phys. Rev. Lett. 96 017201 36 Acher O, Boscher C, Brule B, Perrin G, Vukadinovic N, Suran G and Joisten H 1997 J. Appl. Phys. 81 4057 37 Sulitanu N 2000 J. Magn. Magn. Mater. 214 176 38 Gilbert T L 2004 IEEE Trans. Magn. 40 3443 39 Wei J W, Zhu Z T, Song C K, Feng H M, Jing P P, Wang X Q, Liu Q F and Wang J B 2016 J. Phys. D: Appl. Phys. 49 265002 40 Layadi A 2001 Phys. Rev. B 63 174410 41 Ding Y, Klemmer T J and Crawford T M 2004 J. Appl. Phys. 96 2969 42 Liu Y, Chen L F, Tan C Y, Liu H J and Ong C K 2005 Rev. Sci. Instrum. 76 063911 43 Bisero D, Fin S and Ranchal R 2017 Thin Solid Films 628 158 44 Alvarez N R, Gomez J E, Moya Riffo A E, Vicente Alvarez M A and Butera A 2016 J. Appl. Phys. 119 083906 45 Vukadinovic N, Labrune M, Youssef J B, Marty A, Toussaint J C and Le Gall H 2001 Phys. Rev. B 65 054403 46 Acher O and Adenot A L 2000 Phys. Rev. B 62 11324 47 Chai G Z, Xue D S, Fan X L, Li X L and Guo D W 2008 Appl. Phys. Lett. 93 152516 48 McMichael R D, Lee C G, Bonevich J E, Chen P J, Miller W and Egelhoff W F 2000 J Appl. Phys. 88 5296 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|