Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(2): 027505    DOI: 10.1088/1674-1056/abd693
RAPID COMMUNICATION Prev   Next  

Evolution of domain structure in Fe3GeTe2

Siqi Yin(尹思琪)1, Le Zhao(赵乐)2, Cheng Song(宋成)1,†, Yuan Huang(黄元)3, Youdi Gu(顾有地)1, Ruyi Chen(陈如意)1, Wenxuan Zhu(朱文轩)1, Yiming Sun(孙一鸣)1, Wanjun Jiang(江万军)2, Xiaozhong Zhang(章晓中)1,‡, and Feng Pan(潘峰)1
1 Key Laboratory of Advanced Materials (MOE), School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China; 2 State Key Laboratory of Low-Dimensional Quantum Physics and Department of Physics, Tsinghua University, Beijing 100084, China; 3 Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
Abstract  Two-dimensional (2D) magnets provide an ideal platform to explore new physical phenomena in fundamental magnetism and to realize the miniaturization of magnetic devices. The study on its domain structure evolution with thickness is of great significance for better understanding the 2D magnetism. Here, we investigate the magnetization reversal and domain structure evolution in 2D ferromagnet Fe3GeTe2 (FGT) with a thickness range of 11.2-112 nm. Three types of domain structures and their corresponding hysteresis loops can be obtained. The magnetic domain varies from a circular domain via a dendritic domain to a labyrinthian domain with increasing FGT thickness, which is accompanied by a transition from squared to slanted hysteresis loops with reduced coercive fields. These features can be ascribed to the total energy changes from exchange interaction-dominated to dipolar interaction-dominated with increasing FGT thickness. Our finding not only enriches the fundamental magnetism, but also paves a way towards spintronics based on 2D magnet.
Keywords:  Fe3GeTe2      two-dimensional magnet      thickness dependent domain structure  
Received:  20 November 2020      Revised:  15 December 2020      Accepted manuscript online:  24 December 2020
PACS:  75.70.Ak (Magnetic properties of monolayers and thin films)  
  75.70.Kw (Domain structure (including magnetic bubbles and vortices))  
Fund: Project supported by the National Key R&D Program of China (Grant Nos. 2017YFA0206202 and 2019YFA0308000), the National Natural Science Foundation of China (Grant Nos. 51871130, 62022089, and 11874405), and the Youth Innovation Promotion Association of Chinese Academy of Sciences (Grant No. 2019007).
Corresponding Authors:  Corresponding author. E-mail: songcheng@mail.tsinghua.edu.cn Corresponding author. E-mail: xzzhang@tsinghua.edu.cn   

Cite this article: 

Siqi Yin(尹思琪), Le Zhao(赵乐), Cheng Song(宋成), Yuan Huang(黄元), Youdi Gu(顾有地), Ruyi Chen(陈如意), Wenxuan Zhu(朱文轩), Yiming Sun(孙一鸣), Wanjun Jiang(江万军), Xiaozhong Zhang(章晓中), and Feng Pan(潘峰) Evolution of domain structure in Fe3GeTe2 2021 Chin. Phys. B 30 027505

1 Gong C and Zhang X 2019 Science 363 eaav4450
2 Burch K S, Mandrus D and Park J G 2018 Nature 563 47
3 Gibertini M, Koperski M, Morpurgo A F and Novoselov K S 2019 Nat. Nanotechnol. 14 408
4 Sun X, Zhao S, Bachmatiuk A, Rummeli M H, Gorantla S, Zeng M and Fu L 2020 Small 16 2001484
5 Purbawati A, Coraux J, Vogel J, Hadj-Azzem A, Wu N, Bendiab N, Jegouso D, Renard J, Marty L, Bouchiat V, Sulpice A, Aballe L, Foerster M, Genuzio F, Locatelli A, Mentes T, Han Z, Sun X, Nunez-Regueiro M and Rougemaille N 2020 ACS Appl. Mater. Interfaces 12 30702
6 Huang B, Clark G, Moratalla E N, Klein D R, Cheng R, Seyler K L, Zhong D, Schmidgall E, McGuire M A, Cobden D H, Yao W, Xiao D, Herrero P J and Xu X.2017 Nature 546 270
7 Wang Z, Zhang T, Ding M, Dong B, Li Y, Chen M, Li X, Huang J, Wang H, Zhao X, Li Y, Li D, Jia C, Sun L, Guo H, Ye Y, Sun D, Chen Y, Yang T, Zhang J, Ono S, Han Z and Zhang Z 2018 Nat. Nanotechnol. 13 554
8 Li T, Jiang S, Sivadas N, Wang Z, Xu Y, Weber D, Goldberger J E, Watanabe K, Taniguchi T, Fennie C J, Mak K F and Shan J 2019 Nat. Mater. 18 1303
9 Chen W, Sun Z, Wang Z, Gu L, Xu X, Wu S and Gao C 2019 Science 366 983
10 Kim H H, Jiang S, Yang B, Zhong S, Tian S, Li C, Lei H, Shan J, Mak K F and Tsen A W 2020 Adv. Mater. 32 1905433
11 Wang Y M, Tian S J, Li C H, Jin F, Ji J T, Lei H C and Zhang Q M 2020 Chin. Phys. B 29 056301
12 Song C, Zhang R, Liao L, Zhou Y, Zhou X, Chen R, You Y, Chen X and Pan F 2020 Prog. Mater. Sci. https://doi.org/10.1016/j.pmatsci.2020.100761
13 Lin H, Yan F, Hu C, Lv Q, Zhu W, Wang Z, Wei Z, Chang K and Wang K 2020 ACS Appl. Mater. Interfaces 12 43921
14 Song T, Cai X, Tu M W Y, Zhang X, Huang B, Wilson N, Seyler K L, Zhu L, Taniguchi T, Watanabe K, McGuire M A, Cobden D H, Xiao D, Yao W and Xu X 2018 Science 360 1214
15 Fei Z, Huang B, Malinowski P, Wang W, Song T, Sanchez J, Yao W, Xiao D, Zhu X, May A F, Wu W, Cobden D H, Chu J H and Xu X 2018 Nat. Mater. 17 778
16 Deng Y, Yu Y, Song Y, Zhang J, Wang N Z, Sun Z, Yi Y, Wu Y Z, Wu S, Zhu J, Wang J, Chen X H and Zhang Y 2018 Nature 563 94
17 Wu Q, Ang Y S, Cao L and Ang L K 2019 Appl. Phys. Lett. 115 083105
18 May A F, Ovchinnikov D, Zheng Q, Hermann R, Calder S, Huang B, Fei Z, Liu Y, Xu X and McGuire M A 2019 ACS Nano 13 4436
19 Yang M, Li Q, Chopdekar R V, Stan C, Cabrini S, Choi J W, Wang S, Wang T, Gao N, Scholl A, Tamura N, Hwang C, Wang F and Qiu Z 2020 Adv. Quantum Technol. 3 2000017
20 Zhang L, Huang X, Dai H, Wang M, Cheng H, Tong L, Li Z, Han X, Wang X, Ye L and Han J 2020 Adv. Mater. 32 2002032
21 Zhang L, Song L, Dai H, Yuan J, Wang M, Huang X, Qiao L, Cheng H, Wang X, Ren W, Miao X, Ye L, Xue K and Han J 2020 Appl. Phys. Lett. 116 042402
22 Zhang Y, Lu H, Zhu X, Tan S, Feng W, Liu Q, Zhang W, Chen Q, Liu Y, Luo X, Xie D, Luo L, Zhang Z and Lai X 2018 Sci. Adv. 4 eaao6791
23 Fang C, Wan C, Guo C, Feng C, Wang X, Xing Y, Zhao M, Dong J, Yu G, Zhao Y and Han X 2019 Appl. Phys. Lett. 115 212402
24 Albarakati S, Tan C, Chen Z, Partridge J G, Zheng G, Farrar L, Mayes E L, Field M R, Lee C, Wang Y, Xiong Y, Tian M, Xiang F, Hamilton A R, Tretiakov O A, Culcer D, Zhao Y and Wang L 2019 Sci. Adv. 5 eaaw0409
25 Ding B, Li Z, Xu G, Li H, Hou Z, Liu E, Xi X, Xu F, Yao Y and Wang W 2020 Nano Lett. 20 868
26 Park T E, Peng L, Liang J, Hallal A, Yasin F S, Zhang X, Song K M, Kim S J, Kim K, Weigand M, Schutz G, Finizio S, Raabe J, Garcia K, Xia J, Zhou Y, Ezawa M, Liu X, Chang J, Koo H C, Kim Y D, Chshiev M, Fert A, Yang H, Yu X and Woo S ArXiv: 1907.01425
27 Wu Y, Zhang S, Zhang J, Wang W, Zhu Y L, Hu J, Wong K, Fang C, Wan C, Han X, Shao Q, Taniguchi T, Watanable K, Mao Z, Zhang X and Wang K L 2020 Nat. Commun. 11 3860
28 Wang X, Tang J, Xia X, He C, Zhang J, Liu Y, Wan C, Fang C, Guo C, Yang W, Guang Y, Zhang X, Xu H, Wei J, Liao M, Lu X, Feng J, Li X, Peng Y, Wei H, Yang R, Shi D, Zhang X, Han Z, Zhang Z, Zhang G, Yu G and Han X 2019 Sci. Adv. 5 eaaw8904
29 Nguyen G D, Lee J, Berlijn T, Zou Q, Hus S M, Park J, Gai Z, Lee C and Li A P 2018 Phys. Rev. B 97 014425
30 Tan C, Lee J, Jung S G, Park T, Albarakati S, Partridge J, Field M R, McCulloch D G, Wang L and Lee C 2018 Nat. Commun. 9 1554
31 Huang Y, Sutter E, Shi N N, Zheng J, Yang T, Englund D, Gao H J and Sutter P 2015 ACS Nano 9 10612
32 Huang Y, Pan Y H, Yang R, Bao L H, Meng L, Luo H L, Cai Y Q, Liu G D, Zhao W J, Zhou Z, Wu L M, Zhu Z L, Huang M, Liu L W, Liu L, Cheng P, Wu K H, Tian S B, Gu C Z, Shi Y G, Guo Y F, Cheng Z G, Hu J P, Zhao L, Yang G H, Sutter E, Sutter P, Wang Y L, Ji W, Zhou X J and Gao H J 2020 Nat. Commun. 11 2453
33 Li X L, Han W P, Wu J B, Qiao X F, Zhang J and Tan P H 2017 Adv. Funct. Mater. 27 1604468
34 Speckmann M, Oepen H P and Ibach H 1995 Phys. Rev. Lett. 75 2035
35 Jagla E A 2005 Phys. Rev. B 72 094406
36 Kittel C 1946 Phys. Rev. 70 965
37 Thiele J U, Folks L, Toney M F and Weller D K 1998 J. Appl. Phys. 84 5686
38 Pierce M S, Buechler C R, Sorensen L B, Turner J J, Kevan S D, Jagla E A, Deutsch J M, Mai T, Narayan O, Davies J E, Liu K, Hunter Dunn J, Chesnel K M, Kortright J B, Hellwig O and Fullerton E E 2005 Phys. Rev. Lett. 94 017202
39 Song C, Cui B, Peng J, Mao H and Pan F 2016 Chin. Phys. B 25 067502
40 Leòn-Brito N, Bauer E D, Ronning F, Thompson J D and Movshovich R 2016 J. Appl. Phys. 120 083903
41 Won C, Wu Y, Choi J, Kim W, Scholl A, Doran A, Owens T, Wu J, Jin X, Zhao H and Qiu Z 2005 Phys. Rev. B 71 224429
42 Li Q, Yang M, Gong C, Chopdekar R V, N'Diaye A T, Turner J, Chen G, Scholl A, Shafer P, Arenholz E, Schmid A K, Wang S, Liu K, Gao N, Admasu A S, Cheong S W, Hwang C, Li J, Wang F, Zhang X and Qiu Z 2018 Nano Lett. 18 5974
43 Xie R, Wei J, Liu Z, Tang Y, Tang T, Tang S and Du Y 2014 Chin. Phys. B 23 068103
44 Zhang Z, Liu H and Han B 2002 Chin. Phys. 11 629
[1] Gate-controlled magnetic transitions in Fe3GeTe2 with lithium ion conducting glass substrate
Guangyi Chen(陈光毅), Yu Zhang(张玉), Shaomian Qi(齐少勉), and Jian-Hao Chen(陈剑豪). Chin. Phys. B, 2021, 30(9): 097504.
[2] Molecular beam epitaxy growth of iodide thin films
Xinqiang Cai(蔡新强), Zhilin Xu(徐智临), Shuai-Hua Ji(季帅华), Na Li(李娜), and Xi Chen(陈曦). Chin. Phys. B, 2021, 30(2): 028102.
[3] Raman scattering study of two-dimensional magnetic van der Waals compound VI3
Yi-Meng Wang(王艺朦), Shang-Jie Tian(田尚杰), Cheng-He Li(李承贺), Feng Jin(金峰), Jian-Ting Ji(籍建葶), He-Chang Lei(雷和畅), Qing-Ming Zhang(张清明). Chin. Phys. B, 2020, 29(5): 056301.
[4] Raman scattering study of magnetic layered MPS3 crystals (M=Mn, Fe, Ni)
Yi-Meng Wang(王艺朦), Jian-Feng Zhang(张建丰), Cheng-He Li(李承贺), Xiao-Li Ma(马肖莉), Jian-Ting Ji(籍建葶), Feng Jin(金峰), He-Chang Lei(雷和畅), Kai Liu(刘凯), Wei-Lu Zhang(张玮璐), Qing-Ming Zhang(张清明). Chin. Phys. B, 2019, 28(5): 056301.
No Suggested Reading articles found!