Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(4): 047503    DOI: 10.1088/1674-1056/27/4/047503
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

First-order reversal curve investigated magnetization switching in Pd/Co/Pd wedge film

Yan Li(李岩)1,2, Wei He(何为)1, Rui Sun(孙瑞)1,2, Zi-Zhao Gong(弓子召)1,2, Na Li(李娜)1,2, Qeemat Gul1,2, Xiang-Qun Zhang(张向群)1, Zhao-Hua Cheng(成昭华)1,2
1. State Key Laboratory of Magnetism and Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
2. School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
Abstract  

The magnetization switching plays an essential role in spintronic devices. In this study, a Pd(3 nm)/Co(0.14-1.68 nm)/Pd(5 nm) wedge film is deposited on an MgO (111) substrate by molecular beam epitaxy. We investigate the polar magneto-optical Kerr effect (MOKE) and carry out the first-order reversal curve (FORC) measurements. For the wedge system, it is observed that the Co thickness could drive the spin reorientation transition (SRT) from out-of-plane to in-plane. Meanwhile, we find the different types of magnetization switchings in the continuous SRT process, which can originate from the formation of different magnetic compositions. Our work provides the possibility of tuning the interfacial effect, and paves the way to analyzing magnetization switching.

Keywords:  wedge film      MOKE      FORC      magnetization switching  
Received:  07 December 2017      Revised:  09 January 2018      Accepted manuscript online: 
PACS:  75.60.-d (Domain effects, magnetization curves, and hysteresis)  
  75.78.Jp (Ultrafast magnetization dynamics and switching)  
  75.70.Ak (Magnetic properties of monolayers and thin films)  
Fund: 

Project supported by the National Basic Research Program of China (Grant Nos. 2015CB921403 and 2016YFA0300701) and the National Natural Science Foundation of China (Grant Nos. 51427801, 11374350, and 51671212).

Corresponding Authors:  Wei He, Zhao-Hua Cheng     E-mail:  hewei@iphy.ac.cn;zhcheng@iphy.ac.cn

Cite this article: 

Yan Li(李岩), Wei He(何为), Rui Sun(孙瑞), Zi-Zhao Gong(弓子召), Na Li(李娜), Qeemat Gul, Xiang-Qun Zhang(张向群), Zhao-Hua Cheng(成昭华) First-order reversal curve investigated magnetization switching in Pd/Co/Pd wedge film 2018 Chin. Phys. B 27 047503

[1] Garello K, Miron I M, Avci C O, Freimuth F, Mokrousov Y, Blugel S, Auffret S, Boulle O, Gaudin G and Gambardella P 2013 Nat. Nanotech. 8 587
[2] Pollard S D, Garlow J A, Yu J, Wang Z, Zhu Y and Yang H 2017 Nat. Commun. 8 14761
[3] Rojas-Sanchez J C, Reyren N, Laczkowski P, Savero W, Attane J P, Deranlot C, Jamet M, George J M, Vila L and Jaffres H 2014 Phys. Rev. Lett. 112 106602
[4] Daalderop G H O, Kelly P J and Schuurmans M F H 1994 Phys. Rev. B 50 9989
[5] Jekal S, Rhim S H, Kwon O and Hong S C 2015 J. Appl. Phys. 117 17E105
[6] Davydenko A V, Kozlov A G, Ognev A V, Stebliy M E, Samardak A S, Ermakov K S, Kolesnikov A G and Chebotkevich L A 2017 Phys. Rev. B 95 064430
[7] Blon T, Baules P, Ben Assayag G, Kolinský V, Ousset J C and Snoeck E 2007 J. Magn. Magn. Mater. 31 5
[8] Fry R A, Bennett L H and Della Torre E 1999 J. Appl. Phys. 85 5169
[9] Fry R A, Bennett L H, Della Torre E, Shull R D, Egelhoff W F, Farrow R F and Lee C 1999 J. Magn. Magn. Mater. 193 162
[10] Kim S K, Koo Y M, Chernov V and Padmore H 1996 Phys. Rev. B 53 11114
[11] Kim S K and Shin S C 2001 J. Appl. Phys. 89 3055
[12] Gilbert D A, Liao J W, Wang L W, Lau J W, Klemmer T J, Thiele J U, Lai C H and Liu K 2014 APL Mater. 2 086106
[13] Olamit J, Liu K, Li Z P and Schuller I K 2007 Appl. Phys. Lett. 90 032510
[14] Pike C R, Roberts A P and Verosub K L 1999 J. Appl. Phys. 85 6660
[15] Roberts A P, Heslop D, Zhao X and Pike C R 2014 Rev. Geophys. 52 557
[16] Hu B, He W, Ye J, Tang J, Zhang Y S, Sheraz Ahmad S, Zhang X Q and Cheng Z H 2015 Chin. Phys. B 24 077502
[17] Pommier J, Meyer P, Penissard G, Ferre J, Bruno P and Renard D 1990 Phys. Rev. Lett. 65 2054
[18] Zhan Q F, Vandezande S, Temst K and Van Haesendonck C 2009 New J. Phys. 11 063003
[19] Bader S 1991 J. Magn. Magn. Mater. 100 440
[20] Xu Y, Kernohan E, Freeland D, Ercole A, Tselepi M and Bland J 1998 Phys. Rev. B 58 890
[21] Davies J E, Wu J, Leighton C and Liu K 2005 Phys. Rev. B 72 134419
[1] Couple stress and Darcy Forchheimer hybrid nanofluid flow on a vertical plate by means of double diffusion Cattaneo-Christov analysis
Hamdi Ayed. Chin. Phys. B, 2023, 32(4): 040205.
[2] Quantitative measurement of the charge carrier concentration using dielectric force microscopy
Junqi Lai(赖君奇), Bowen Chen(陈博文), Zhiwei Xing(邢志伟), Xuefei Li(李雪飞), Shulong Lu(陆书龙), Qi Chen(陈琪), and Liwei Chen(陈立桅). Chin. Phys. B, 2023, 32(3): 037202.
[3] Orbital torque of Cr-induced magnetization switching in perpendicularly magnetized Pt/Co/Pt/Cr heterostructures
Hongfei Xie(谢宏斐), Yuhan Chang(常宇晗), Xi Guo(郭玺), Jianrong Zhang(张健荣), Baoshan Cui(崔宝山), Yalu Zuo(左亚路), and Li Xi(席力). Chin. Phys. B, 2023, 32(3): 037502.
[4] Simulation based on a modified social force model for sensitivity to emergency signs in subway station
Zheng-Yu Cai(蔡征宇), Ru Zhou(周汝), Yin-Kai Cui(崔银锴), Yan Wang(王妍), and Jun-Cheng Jiang(蒋军成). Chin. Phys. B, 2023, 32(2): 020507.
[5] Effect of thickness on magnetic properties of single domain GdBCO bulk superconductors
Ping Gao(高平), Wan-Min Yang(杨万民), Ting-Ting Wu(武婷婷), Miao Wang(王妙), and Kun Liu(刘坤). Chin. Phys. B, 2023, 32(2): 027401.
[6] Chiral lateral optical force near plasmonic ring induced by Laguerre-Gaussian beam
Ying-Dong Nie(聂英东), Zhi-Guang Sun(孙智广), and Yu-Rui Fang(方蔚瑞). Chin. Phys. B, 2023, 32(1): 018702.
[7] The coupled deep neural networks for coupling of the Stokes and Darcy-Forchheimer problems
Jing Yue(岳靖), Jian Li(李剑), Wen Zhang(张文), and Zhangxin Chen(陈掌星). Chin. Phys. B, 2023, 32(1): 010201.
[8] Optical pulling force on nanoparticle clusters with gain due to Fano-like resonance
Jiangnan Ma(马江南), Feng Lv(冯侣), Guofu Wang(王国富), Zhifang Lin(林志方), Hongxia Zheng(郑红霞), and Huajin Chen(陈华金). Chin. Phys. B, 2023, 32(1): 014205.
[9] Adaptive semi-empirical model for non-contact atomic force microscopy
Xi Chen(陈曦), Jun-Kai Tong(童君开), and Zhi-Xin Hu(胡智鑫). Chin. Phys. B, 2022, 31(8): 088202.
[10] Passenger management strategy and evacuation in subway station under Covid-19
Xiao-Xia Yang(杨晓霞), Hai-Long Jiang(蒋海龙), Yuan-Lei Kang(康元磊), Yi Yang(杨毅), Yong-Xing Li(李永行), and Chang Yu(蔚畅). Chin. Phys. B, 2022, 31(7): 078901.
[11] Efficient quantum private comparison protocol based on one direction discrete quantum walks on the circle
Jv-Jie Wang(王莒杰), Zhao Dou(窦钊), Xiu-Bo Chen(陈秀波), Yu-Ping Lai(赖裕平), and Jian Li(李剑). Chin. Phys. B, 2022, 31(5): 050308.
[12] On chip chiral and plasmonic hybrid dimer or tetramer: Generic way to reverse longitudinal and lateral optical binding forces
Sudipta Biswas, Roksana Khanam Rumi, Tasnia Rahman Raima, Saikat Chandra Das, and M R C Mahdy. Chin. Phys. B, 2022, 31(5): 054202.
[13] Acoustic radiation force on a rigid cylinder near rigid corner boundaries exerted by a Gaussian beam field
Qin Chang(常钦), Yuchen Zang(臧雨宸), Weijun Lin(林伟军), Chang Su(苏畅), and Pengfei Wu(吴鹏飞). Chin. Phys. B, 2022, 31(4): 044302.
[14] Long-time evolution of charged grains in plasma under harmonic external force and after being withdrawn
Miao Guan(管苗), Zhi-Dong Chen(陈志东), Meng-Die Li(李梦蝶), Zhong-Mao Liu(刘忠茂), You-Mei Wang(汪友梅), and Ming-Yang Yu(郁明阳). Chin. Phys. B, 2022, 31(2): 025201.
[15] Correlation mechanism between force chains and friction mechanism during powder compaction
Ning Zhang(张宁), Shuai Zhang(张帅), Jian-Jun Tan(谈健君), and Wei Zhang(张炜). Chin. Phys. B, 2022, 31(2): 024501.
No Suggested Reading articles found!