Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(3): 030502    DOI: 10.1088/1674-1056/abc67d
GENERAL Prev   Next  

Detailed structural, mechanical, and electronic study of five structures for CaF2 under high pressure

Ying Guo(郭颖)1,†, Yumeng Fang(方钰萌)1, and Jun Li(李俊)2
1 Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Big Data Analysis Technology, Nanjing University of Information Science and Technology, Nanjing 210044, China; 2 Mingde New Material Technology Co., LTD, Anji 313300, China
Abstract  Detailed density functional theory (DFT) calculations of the structural, mechanical, thermodynamic, and electronic properties of crystalline CaF2 with five different structures in the pressure range of 0 GPa-150 GPa are performed by both GGA (generalized gradient approximation)-PBE (Perdew-Burke-Ernzerhof) and LDA (local density approximation)-CAPZ (Cambridge Serial Total Energy Package). It is found that the enthalpy differences imply that the fluorite phase $ \to $ PbCl2-type phase $ \to $ Ni2In-type phase transition in CaF2 occurs at P GGA1 = 8.0 GPa, P GGA2 = 111.4 GPa by using the XC of GGA, and P LDA1 = 4.5 GPa, P LDA2 = 101.7 GPa by LDA, respectively, which is consistent with previous experiments and theoretical conclusions. Moreover, the enthalpy differences between PbCl2-type and Ni2In-type phases in one molecular formula become very small at the pressure of about 100 GPa, indicating the possibility of coexistence of two-phase at high pressures. This may be the reason why the transition pressure of the second phase transition in other reports is so huge (68 GPa-278 GPa). The volume changed in the second phase transition are also consistent with the enthalpy difference result. Besides, the pressure dependence of mechanical and thermodynamic properties of CaF2 is studied. It is found that the high-pressure phase of Ni2In-type structure has better stiffness in CaF2 crystal, and the hardness of the material has hardly changed in the second phase transition. Finally, the electronic structure of CaF2 is also analyzed with the change of pressure. By analyzing the band gap and density of states, the large band gap indicates the CaF2 crystal is always an insulator at 0 GPa-150 GPa.
Keywords:  density functional theory (DFT)      high-pressure      phase transition      coexistence  
Received:  15 August 2020      Revised:  13 September 2020      Accepted manuscript online:  31 October 2020
PACS:  05.70.Fh (Phase transitions: general studies)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 61971229).
Corresponding Authors:  Corresponding author. E-mail: yguo@nuist.edu.cn   

Cite this article: 

Ying Guo(郭颖), Yumeng Fang(方钰萌), and Jun Li(李俊) Detailed structural, mechanical, and electronic study of five structures for CaF2 under high pressure 2021 Chin. Phys. B 30 030502

1 Dong Y J, Zhou G Q, Yang W Q, Su L B and Xu J2004 J. Inorg. Mater. 19 449 (in Chinese)
2 Westerhoff T, Knapp K and Moersen E 1998 Proc. SPIE 3424 10
3 Rix S, Natura U, Loske F, Letz M, Felser C and Reichling M 2011 Appl. Phys. Lett. 99 261909
4 de Biasi R S and Grillo M L N 2012 Physica B 407 2164
5 Hazen R M and Finger L W 1981 J. Appl. Crystallogr. 14 234
6 Alzahrani A Z and Usanmaz D 2011 J. Appl. Phys. 109 123708
7 Muehlig C, Triebel W, Stafast H and Letz M 2010 Appl. Phys. B 99 525
8 Rubloff G W 1971 Phys. Rev. B 5 662
9 Barth J, Johnson R L, Cardona M, Fuchs D and Bradshaw A M 1990 Phys. Rev. B 41 3291
10 Gan F, Xu Y N, Huang M Z, Ching W Y and Harrison J G 1992 Phys. Rev. B 45 8248
11 Verstraete M and Gonze X 2003 Phys. Rev. B 68 195123
12 Shi H, Eglitis R I and Borstel G 2005 Phys. Rev. B 72 045109
13 Katrusiak A and Nelmes R J 1986 J. Appl. Crystallogr. 19 73
14 Angel R J 1993 J. Phys.: Condens. Matter 5 L141
15 Angel R J, Allan D R, Miletich R and Finger L W 1997 J. Appl. Crystallogr. 30 461
16 Miletich R, Allan D R and Kuhs W F 2001 Rev. Mineral. Geochem. 41 445
17 Hu T J, Cui X Y, Wang J S, Zhang J K, Li X F, Yang J H and Gao C X 2018 Chin. Phys. B 27 016401
18 Seifert K F and Bunsenges B1966 Phys. Chem. 70 1041
19 Dandekar D P and Jamieson J C1969 Trans. Am. Crystallogr. Assoc. 5 19
20 Gerward L, Olsen J S, Steenstrup S, Åsbrink S and Waskowska A 1992 J. Appl. Crystallogr. 25 578
21 Speziale S and Duffy T S 2002 Phys. Chem. Miner. 29 465
22 Morris E, Groy T and Leinenweber K 2001 J. Phys. Chem. Solids 62 1117
23 El'kin F S, Tsiok O B, Khvostantsev L G and Brazhkin V V 2005 J. Exp. Theor. Phys. 100 971
24 Dorfman S M, Jiang F, Mao Z, Kubo A, Meng Y, Prakapenka V B and Duffy T S 2010 Phys. Rev. B 81 174121
25 Wang J S, Hao J, Wang Q S, Jin Y X, Li F F, Liu B, Li Q J, Liu B B and Cui Q L 2011 Phys. Status Solidi B 248 1115
26 Wu X, Qin S and Wu Z Y 2006 Phys. Rev. B 73 134103
27 Zeng Z Y, Chen X R, Zhu J and Hu C E 2008 Chin. Phys. Lett. 25 230
28 Cui S X, Feng W X, Hu H Q, Feng Z B and Wang Y X 2009 Comp. Mater. Sci. 47 41
29 Shi H, Luo W, Johansson B and Ahujia R 2009 J. Phys.: Condens. Matter 21 415501
30 Qi Y Y, Cheng Y, Liu M, Chen X R and Cai L C 2013 Physica B 426 13
31 Clark S J, Segall M D, Pickard C J, Hasnip P J, Probert M J, Refson K and Payne M C 2005 Z. fuer Kristallogr. 220 567
32 Segall M D, Lindan P J D, Probert M J, Pickard C J, Hasnip P J, Clark S J and Payne M C 2002 J. Phys.: Condens. Matter 14 2717
33 Laasonen K, Pasquarello A, Car R, Lee C and Vanderbilt D 1993 Phys. Rev. B 47 10142
34 Vanderbilt D 1990 Phys. Rev. B 41 7892
35 Liu L, Yi L, Liu H, Li Y, Zhuang C Q, Yang L X and Liu G P 2018 Chin. Phys. B 27 047402
36 Chen L M, Zhang K, Huang X, Zhang Y B, Xie Q Y and Li J 2020 Int. J. Mod. Phys. C 31 2050025
37 Huang D, Liu H, Hou M Q, Xie M Y, Lu Y F, Liu L, Li Y, Cui Y J, Li Y, Deng L W and Du J G 2017 Chin. Phys. B 26 089101
38 Chen L M, Zhang Y B, Zhang K, Huang X, Li J and Xie Q Y 2020 Int. J. Mod. Phys. C 31 2050133
39 Blanco M A, Francisco E and Luana V 2004 Comput. Phys. Commun. 158 57
40 Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
41 Ceperley D M and Alder B J 1980 Phys. Rev. Lett. 45 566
42 Perdew J P and Zunger A 1981 Phys. Rev. B 23 5048
43 Kresse G and Furthmller J 1996 Phys. Rev. B 54 11169
44 Fletcher R1980 Practical Methods of Optimization (New York: Wiley) p. 120
45 Wevers M A C, Schon J C and Jansen M 1998 J. Solid State Chem. 136 233
46 Leger J M, Haines J, Atouf A, Schulte O and Hull S 1995 Phys. Rev. B 52 13247
47 Poirier P J2000 Introduction to the physics of the earth's interior(C. U. Press)
48 Pend\'as A M, Recio J M, Fl\'orez M and Lua\'na V 1994 Phys. Rev. B 49 5858
49 Kanchana V, Vaitheeswaran G and Rajagopalan M 2003 Physica B 328 283
50 Ivanovskii A L 2012 Prog. Mater. Sci. 57 184
51 Barron T and Klein M 1965 Proc. Phys. Soc. 85 523
52 Wang J, Li J, Yip S, Phillpot S and Wolf D 1995 Phys. Rev. B 52 12627
53 Duane C W 1972 American Journal of Physics 40 1718
54 Mouhat F and Coudertlk F X2014 Phys. Rev. B 90 2241104
55 Sin'ko G V and Smirnov N A 2002 J. Phys.: Condens. Matter 14 6989
56 Sin'ko G V. and Smirnov N A 2004 J. Phys.: Condens. Matter 16 8101
57 Schroers J and Johnson W L 2004 Phys. Rev. Lett. 93 255506
58 Santamar\'ía-P\'erez D, Kumar R S, Dos Santos-Garc\'ía A J, Errandonea D, Chuli\'a-Jord\'an R, Saez-Puche R, Rodr\'íguez-Hern\'andez P and Munoz A 2012 Phys. Rev. B 86 94116
59 Pugh S F 1954 Philos. Mag. 45 823
60 Grimvall G1999 Thermophysical Properties of Materials(Amsterdam: Elsevier)
[1] Tailoring of thermal expansion and phase transition temperature of ZrW2O8 with phosphorus and enhancement of negative thermal expansion of ZrW1.5P0.5O7.75
Chenjun Zhang(张晨骏), Xiaoke He(何小可), Zhiyu Min(闵志宇), and Baozhong Li(李保忠). Chin. Phys. B, 2023, 32(4): 048201.
[2] Predicting novel atomic structure of the lowest-energy FenP13-n(n=0-13) clusters: A new parameter for characterizing chemical stability
Yuanqi Jiang(蒋元祺), Ping Peng(彭平). Chin. Phys. B, 2023, 32(4): 047102.
[3] Topological phase transition in network spreading
Fuzhong Nian(年福忠) and Xia Zhang(张霞). Chin. Phys. B, 2023, 32(3): 038901.
[4] Coexistence of giant Rashba spin splitting and quantum spin Hall effect in H-Pb-F
Wenming Xue(薛文明), Jin Li(李金), Chaoyu He(何朝宇), Tao Ouyang(欧阳滔), Xiongying Dai(戴雄英), and Jianxin Zhong(钟建新). Chin. Phys. B, 2023, 32(3): 037101.
[5] Liquid-liquid phase transition in confined liquid titanium
Di Zhang(张迪), Yunrui Duan(段云瑞), Peiru Zheng(郑培儒), Yingjie Ma(马英杰), Junping Qian(钱俊平), Zhichao Li(李志超), Jian Huang(黄建), Yanyan Jiang(蒋妍彦), and Hui Li(李辉). Chin. Phys. B, 2023, 32(2): 026801.
[6] Effects of π-conjugation-substitution on ESIPT process for oxazoline-substituted hydroxyfluorenes
Di Wang(汪迪), Qiao Zhou(周悄), Qiang Wei(魏强), and Peng Song(宋朋). Chin. Phys. B, 2023, 32(2): 028201.
[7] A new transition metal diphosphide α-MoP2 synthesized by a high-temperature and high-pressure technique
Xiaolei Liu(刘晓磊), Zhenhai Yu(于振海), Jianfu Li(李建福), Zhenzhen Xu(徐真真), Chunyin Zhou(周春银), Zhaohui Dong(董朝辉), Lili Zhang(张丽丽), Xia Wang(王霞), Na Yu(余娜), Zhiqiang Zou(邹志强),Xiaoli Wang(王晓丽), and Yanfeng Guo(郭艳峰). Chin. Phys. B, 2023, 32(1): 018102.
[8] Magnetocaloric properties and Griffiths phase of ferrimagnetic cobaltite CaBaCo4O7
Tina Raoufi, Jincheng He(何金城), Binbin Wang(王彬彬), Enke Liu(刘恩克), and Young Sun(孙阳). Chin. Phys. B, 2023, 32(1): 017504.
[9] Prediction of flexoelectricity in BaTiO3 using molecular dynamics simulations
Long Zhou(周龙), Xu-Long Zhang(张旭龙), Yu-Ying Cao(曹玉莹), Fu Zheng(郑富), Hua Gao(高华), Hong-Fei Liu(刘红飞), and Zhi Ma(马治). Chin. Phys. B, 2023, 32(1): 017701.
[10] Slight Co-doping tuned magnetic and electric properties on cubic BaFeO3 single crystal
Shijun Qin(覃湜俊), Bowen Zhou(周博文), Zhehong Liu(刘哲宏), Xubin Ye(叶旭斌), Xueqiang Zhang(张雪强), Zhao Pan(潘昭), and Youwen Long(龙有文). Chin. Phys. B, 2022, 31(9): 097503.
[11] Configurational entropy-induced phase transition in spinel LiMn2O4
Wei Hu(胡伟), Wen-Wei Luo(罗文崴), Mu-Sheng Wu(吴木生), Bo Xu(徐波), and Chu-Ying Ouyang(欧阳楚英). Chin. Phys. B, 2022, 31(9): 098202.
[12] Hard-core Hall tube in superconducting circuits
Xin Guan(关欣), Gang Chen(陈刚), Jing Pan(潘婧), and Zhi-Guo Gui(桂志国). Chin. Phys. B, 2022, 31(8): 080302.
[13] Exchange-coupling-induced fourfold magnetic anisotropy in CoFeB/FeRh bilayer grown on SrTiO3(001)
Qingrong Shao(邵倾蓉), Jing Meng(孟婧), Xiaoyan Zhu(朱晓艳), Yali Xie(谢亚丽), Wenjuan Cheng(程文娟), Dongmei Jiang(蒋冬梅), Yang Xu(徐杨), Tian Shang(商恬), and Qingfeng Zhan(詹清峰). Chin. Phys. B, 2022, 31(8): 087503.
[14] Effect of f-c hybridization on the $\gamma\to \alpha$ phase transition of cerium studied by lanthanum doping
Yong-Huan Wang(王永欢), Yun Zhang(张云), Yu Liu(刘瑜), Xiao Tan(谈笑), Ce Ma(马策), Yue-Chao Wang(王越超), Qiang Zhang(张强), Deng-Peng Yuan(袁登鹏), Dan Jian(简单), Jian Wu(吴健), Chao Lai(赖超), Xi-Yang Wang(王西洋), Xue-Bing Luo(罗学兵), Qiu-Yun Chen(陈秋云), Wei Feng(冯卫), Qin Liu(刘琴), Qun-Qing Hao(郝群庆), Yi Liu(刘毅), Shi-Yong Tan(谭世勇), Xie-Gang Zhu(朱燮刚), Hai-Feng Song(宋海峰), and Xin-Chun Lai(赖新春). Chin. Phys. B, 2022, 31(8): 087102.
[15] Characterization of topological phase of superlattices in superconducting circuits
Jianfei Chen(陈健菲), Chaohua Wu(吴超华), Jingtao Fan(樊景涛), and Gang Chen(陈刚). Chin. Phys. B, 2022, 31(8): 088501.
No Suggested Reading articles found!