|
|
Detailed structural, mechanical, and electronic study of five structures for CaF2 under high pressure |
Ying Guo(郭颖)1,†, Yumeng Fang(方钰萌)1, and Jun Li(李俊)2 |
1 Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Big Data Analysis Technology, Nanjing University of Information Science and Technology, Nanjing 210044, China; 2 Mingde New Material Technology Co., LTD, Anji 313300, China |
|
|
Abstract Detailed density functional theory (DFT) calculations of the structural, mechanical, thermodynamic, and electronic properties of crystalline CaF2 with five different structures in the pressure range of 0 GPa-150 GPa are performed by both GGA (generalized gradient approximation)-PBE (Perdew-Burke-Ernzerhof) and LDA (local density approximation)-CAPZ (Cambridge Serial Total Energy Package). It is found that the enthalpy differences imply that the fluorite phase $ \to $ PbCl2-type phase $ \to $ Ni2In-type phase transition in CaF2 occurs at P GGA1 = 8.0 GPa, P GGA2 = 111.4 GPa by using the XC of GGA, and P LDA1 = 4.5 GPa, P LDA2 = 101.7 GPa by LDA, respectively, which is consistent with previous experiments and theoretical conclusions. Moreover, the enthalpy differences between PbCl2-type and Ni2In-type phases in one molecular formula become very small at the pressure of about 100 GPa, indicating the possibility of coexistence of two-phase at high pressures. This may be the reason why the transition pressure of the second phase transition in other reports is so huge (68 GPa-278 GPa). The volume changed in the second phase transition are also consistent with the enthalpy difference result. Besides, the pressure dependence of mechanical and thermodynamic properties of CaF2 is studied. It is found that the high-pressure phase of Ni2In-type structure has better stiffness in CaF2 crystal, and the hardness of the material has hardly changed in the second phase transition. Finally, the electronic structure of CaF2 is also analyzed with the change of pressure. By analyzing the band gap and density of states, the large band gap indicates the CaF2 crystal is always an insulator at 0 GPa-150 GPa.
|
Received: 15 August 2020
Revised: 13 September 2020
Accepted manuscript online: 31 October 2020
|
PACS:
|
05.70.Fh
|
(Phase transitions: general studies)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 61971229). |
Corresponding Authors:
†Corresponding author. E-mail: yguo@nuist.edu.cn
|
Cite this article:
Ying Guo(郭颖), Yumeng Fang(方钰萌), and Jun Li(李俊) Detailed structural, mechanical, and electronic study of five structures for CaF2 under high pressure 2021 Chin. Phys. B 30 030502
|
1 Dong Y J, Zhou G Q, Yang W Q, Su L B and Xu J2004 J. Inorg. Mater. 19 449 (in Chinese) 2 Westerhoff T, Knapp K and Moersen E 1998 Proc. SPIE 3424 10 3 Rix S, Natura U, Loske F, Letz M, Felser C and Reichling M 2011 Appl. Phys. Lett. 99 261909 4 de Biasi R S and Grillo M L N 2012 Physica B 407 2164 5 Hazen R M and Finger L W 1981 J. Appl. Crystallogr. 14 234 6 Alzahrani A Z and Usanmaz D 2011 J. Appl. Phys. 109 123708 7 Muehlig C, Triebel W, Stafast H and Letz M 2010 Appl. Phys. B 99 525 8 Rubloff G W 1971 Phys. Rev. B 5 662 9 Barth J, Johnson R L, Cardona M, Fuchs D and Bradshaw A M 1990 Phys. Rev. B 41 3291 10 Gan F, Xu Y N, Huang M Z, Ching W Y and Harrison J G 1992 Phys. Rev. B 45 8248 11 Verstraete M and Gonze X 2003 Phys. Rev. B 68 195123 12 Shi H, Eglitis R I and Borstel G 2005 Phys. Rev. B 72 045109 13 Katrusiak A and Nelmes R J 1986 J. Appl. Crystallogr. 19 73 14 Angel R J 1993 J. Phys.: Condens. Matter 5 L141 15 Angel R J, Allan D R, Miletich R and Finger L W 1997 J. Appl. Crystallogr. 30 461 16 Miletich R, Allan D R and Kuhs W F 2001 Rev. Mineral. Geochem. 41 445 17 Hu T J, Cui X Y, Wang J S, Zhang J K, Li X F, Yang J H and Gao C X 2018 Chin. Phys. B 27 016401 18 Seifert K F and Bunsenges B1966 Phys. Chem. 70 1041 19 Dandekar D P and Jamieson J C1969 Trans. Am. Crystallogr. Assoc. 5 19 20 Gerward L, Olsen J S, Steenstrup S, Åsbrink S and Waskowska A 1992 J. Appl. Crystallogr. 25 578 21 Speziale S and Duffy T S 2002 Phys. Chem. Miner. 29 465 22 Morris E, Groy T and Leinenweber K 2001 J. Phys. Chem. Solids 62 1117 23 El'kin F S, Tsiok O B, Khvostantsev L G and Brazhkin V V 2005 J. Exp. Theor. Phys. 100 971 24 Dorfman S M, Jiang F, Mao Z, Kubo A, Meng Y, Prakapenka V B and Duffy T S 2010 Phys. Rev. B 81 174121 25 Wang J S, Hao J, Wang Q S, Jin Y X, Li F F, Liu B, Li Q J, Liu B B and Cui Q L 2011 Phys. Status Solidi B 248 1115 26 Wu X, Qin S and Wu Z Y 2006 Phys. Rev. B 73 134103 27 Zeng Z Y, Chen X R, Zhu J and Hu C E 2008 Chin. Phys. Lett. 25 230 28 Cui S X, Feng W X, Hu H Q, Feng Z B and Wang Y X 2009 Comp. Mater. Sci. 47 41 29 Shi H, Luo W, Johansson B and Ahujia R 2009 J. Phys.: Condens. Matter 21 415501 30 Qi Y Y, Cheng Y, Liu M, Chen X R and Cai L C 2013 Physica B 426 13 31 Clark S J, Segall M D, Pickard C J, Hasnip P J, Probert M J, Refson K and Payne M C 2005 Z. fuer Kristallogr. 220 567 32 Segall M D, Lindan P J D, Probert M J, Pickard C J, Hasnip P J, Clark S J and Payne M C 2002 J. Phys.: Condens. Matter 14 2717 33 Laasonen K, Pasquarello A, Car R, Lee C and Vanderbilt D 1993 Phys. Rev. B 47 10142 34 Vanderbilt D 1990 Phys. Rev. B 41 7892 35 Liu L, Yi L, Liu H, Li Y, Zhuang C Q, Yang L X and Liu G P 2018 Chin. Phys. B 27 047402 36 Chen L M, Zhang K, Huang X, Zhang Y B, Xie Q Y and Li J 2020 Int. J. Mod. Phys. C 31 2050025 37 Huang D, Liu H, Hou M Q, Xie M Y, Lu Y F, Liu L, Li Y, Cui Y J, Li Y, Deng L W and Du J G 2017 Chin. Phys. B 26 089101 38 Chen L M, Zhang Y B, Zhang K, Huang X, Li J and Xie Q Y 2020 Int. J. Mod. Phys. C 31 2050133 39 Blanco M A, Francisco E and Luana V 2004 Comput. Phys. Commun. 158 57 40 Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865 41 Ceperley D M and Alder B J 1980 Phys. Rev. Lett. 45 566 42 Perdew J P and Zunger A 1981 Phys. Rev. B 23 5048 43 Kresse G and Furthmller J 1996 Phys. Rev. B 54 11169 44 Fletcher R1980 Practical Methods of Optimization (New York: Wiley) p. 120 45 Wevers M A C, Schon J C and Jansen M 1998 J. Solid State Chem. 136 233 46 Leger J M, Haines J, Atouf A, Schulte O and Hull S 1995 Phys. Rev. B 52 13247 47 Poirier P J2000 Introduction to the physics of the earth's interior(C. U. Press) 48 Pend\'as A M, Recio J M, Fl\'orez M and Lua\'na V 1994 Phys. Rev. B 49 5858 49 Kanchana V, Vaitheeswaran G and Rajagopalan M 2003 Physica B 328 283 50 Ivanovskii A L 2012 Prog. Mater. Sci. 57 184 51 Barron T and Klein M 1965 Proc. Phys. Soc. 85 523 52 Wang J, Li J, Yip S, Phillpot S and Wolf D 1995 Phys. Rev. B 52 12627 53 Duane C W 1972 American Journal of Physics 40 1718 54 Mouhat F and Coudertlk F X2014 Phys. Rev. B 90 2241104 55 Sin'ko G V and Smirnov N A 2002 J. Phys.: Condens. Matter 14 6989 56 Sin'ko G V. and Smirnov N A 2004 J. Phys.: Condens. Matter 16 8101 57 Schroers J and Johnson W L 2004 Phys. Rev. Lett. 93 255506 58 Santamar\'ía-P\'erez D, Kumar R S, Dos Santos-Garc\'ía A J, Errandonea D, Chuli\'a-Jord\'an R, Saez-Puche R, Rodr\'íguez-Hern\'andez P and Munoz A 2012 Phys. Rev. B 86 94116 59 Pugh S F 1954 Philos. Mag. 45 823 60 Grimvall G1999 Thermophysical Properties of Materials(Amsterdam: Elsevier) |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|