Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(2): 020506    DOI: 10.1088/1674-1056/abd765
Special Issue: SPECIAL TOPIC — Quantum computation and quantum simulation
SPECIAL TOPIC—Quantum computation and quantum simulation Prev   Next  

Quantum dynamics on a lossy non-Hermitian lattice

Li Wang(王利)1,†, Qing Liu(刘青)1, and Yunbo Zhang(张云波)2
1 Institute of Theoretical Physics, State Key Laboratory of Quantum Optics and Quantum Optics Devices, Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China; 2 Key Laboratory of Optical Field Manipulation of Zhejiang Province and Physics Department of Zhejiang Sci-Tech University, Hangzhou 310018, China
Abstract  We investigate quantum dynamics of a quantum walker on a finite bipartite non-Hermitian lattice, in which the particle can leak out with certain rate whenever it visits one of the two sublattices. Quantum walker initially located on one of the non-leaky sites will finally totally disappear after a length of evolution time and the distribution of decay probability on each unit cell is obtained. In one regime, the resultant distribution shows an expected decreasing behavior as the distance from the initial site increases. However, in the other regime, we find that the resultant distribution of local decay probability is very counterintuitive, in which a relatively high population of decay probability appears on the edge unit cell which is the farthest from the starting point of the quantum walker. We then analyze the energy spectrum of the non-Hermitian lattice with pure loss, and find that the intriguing behavior of the resultant decay probability distribution is intimately related to the existence and specific property of the edge states, which are topologically protected and can be well predicted by the non-Bloch winding number. The exotic dynamics may be observed experimentally with arrays of coupled resonator optical waveguides.
Keywords:  quantum walk      non-Hermitian lattice      dissipations      edge states  
Received:  19 November 2020      Revised:  14 December 2020      Accepted manuscript online:  30 December 2020
PACS:  05.40.Fb (Random walks and Levy flights)  
  03.65.Vf (Phases: geometric; dynamic or topological)  
  42.82.Et (Waveguides, couplers, and arrays)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11404199 and 11674201), Natural Science Foundation of Shanxi Province, China (Grant No. 1331KSC), Natural Science Foundation for Youths of Shanxi Province, China (Grant No. 2015021012), and Research Initiation Funds from SXU (Grant No. 216533801001).
Corresponding Authors:  Corresponding author. E-mail: liwangiphy@sxu.edu.cn   

Cite this article: 

Li Wang(王利), Qing Liu(刘青), and Yunbo Zhang(张云波) Quantum dynamics on a lossy non-Hermitian lattice 2021 Chin. Phys. B 30 020506

1 Aharonov Y, Davidovich L and Zagury N 1993 Phys. Rev. A 48 1687
2 Kempe J 2003 Comtemporary Physics 44 307
3 Wang J B and Manouchehri K 2013 Physical implementation of quantum walks(Berlin: Springer)
4 Bouwmeester D, Marzoli I, Karman G P, Schleich W and Woerdman J P 1999 Phys. Rev. A 61 013410
5 Karski M, F\"orster L, Choi J M, Steffen A, Alt W, Meschede D and Widera A 2009 Science 325 174
6 Preiss P M, Ma R, Tai M E, Lukin A, Rispoli M, Zupancic P, Islam R and Greiner M 2015 Science 347 1229
7 Ramasesh V V, Flurin E, Rudner M, Siddiqi I and Yao N Y 2017 Phys. Rev. Lett. 118 130501
8 Yan Z G, Zhang Y R, Gong M, Wu Y L, Zheng Y R, Li S W, Wang C, Liang F T, Lin J, Xu Y, Guo C, Sun L, Peng C Z, Xia K Y, Deng H, Rong H, You J Q, Nori F, Fan H, Zhu X B and Pan J W 2019 Science 364 753
9 Ye Y S, Ge Z Y, Wu Y L, Wang S Y, Gong M, Zhang Y R, Zhu Q L, Yang R, Li S W, Liang F T, Lin J, Xu Y, Guo C, Sun L H, Cheng C, Ma N S, Meng Z Y, Deng H, Rong H, Lu C Y, Peng C Z, Fan H, Zhu X B and Pan J W 2019 Phys. Rev. Lett. 123 050502
10 Broome M A, Fedrizzi A, Lanyon B P, Kassal I, Aspuru-Guzik A and White A G 2010 Phys. Rev. Lett. 104 153602
11 Xue P, Zhang R, Qin H, Zhan X, Bian Z H, Li J and Sanders B C 2015 Phys. Rev. Lett. 114 140502
12 Schmitz H, Matjeschk R, Schneider C, Glueckert J, Enderlein M, Huber T and Schaetz T 2009 Phys. Rev. Lett. 103 090504
13 Sansoni L, Sciarrino F, Vallone G, Mataloni P, Crespi A, Ramponi R and Osellame R 2012 Phys. Rev. Lett. 108 010502
14 Du J F, Li H, Xu X D, Shi M J, Wu J H, Zhou X Y and Han R D 2003 Phys. Rev. A 67 042316
15 Kitagawa T, Rudner M S, Berg E and Demler E 2010 Phys. Rev. A 82 033429
16 Kitagawa T, Broome M A, Fedrizzi A, Rudner M S, Berg E, Kassal I, Aspuru Guizik A, Demler E and White A G 2012 Nat. Commun. 3 882
17 Flurin E, Ramasesh V V, Hacohen-Gourgy S, Martin L S, Yao N Y and Siddiqi I 2017 Phys. Rev. X 7 031023
18 Benedetti C, Buscemi F and Bordone P 2012 Phys. Rev. A 85 042314
19 Qin X Z, Ke Y G, Guan X W, Li Z B, Andrei N and Lee C H 2014 Phys. Rev. A 90 062301
20 Wang L, Hao Y and Chen S 2008 Eur. Phys. J. D 48 229
21 Lahini Y, Verbin M, Huber S D, Bromberg Y, Pugatch R and Silberberg Y 2012 Phys. Rev. A 86 011603
22 Wang L, Hao Y J and Chen S 2010 Phys. Rev. A 81 063637
23 Wang L M, Wang L and Zhang Y B 2014 Phys. Rev. A 90 063618
24 Gan S, He X D, Liu B, Feng C D 2015 Chin. Phys. Lett. 32 080305
25 Yin Y, Katsanos D E and Evangelou S N 2008 Phys. Rev. A 77 022302
26 Beggi A, Buscemi F and Bordone P 2016 Quantum Inf. Proc. 15 3711
27 Zhao J, Hu Y Y, Tong P Q 2015 Chin. Phys. Lett. 32 060501
28 Li Z J, Izaac J A and Wang J B 2013 Phys. Rev. A 87 012314
29 Li Z J, Wang J B 2015 Sci. Rep. 5 13585
30 Kraus Y E, Lahini Y, Ringel Z, Verbin M and Zilberberg O 2012 Phys. Rev. Lett. 109 106402
31 Wang L, Liu N, Chen S and Zhang Y B 2015 Phys. Rev. A 92 053606
32 Wang L, Liu N, Chen S and Zhang Y B 2017 Phys. Rev. A 95 013619
33 Bender C M and Boettcher S 1998 Phys. Rev. Lett. 80 5243
34 Bender C M, Brody D C and Jones H F 2002 Phys. Rev. Lett. 89 270401
35 Bender C M 2007 Rep. Prog. Phys. 70 947
36 Moiseyev N 2011 Non-Hermitian Quantum Mechanics (England: Cambridge University Press)
37 Shen H T, Zhen B and Fu L 2018 Phys. Rev. Lett. 120 146402
39 Yin C H, Jiang H, Li L H, L\"u R and Chen S 2018 Phys. Rev. A 97 052115
40 Shen H T and Fu L 2018 Phys. Rev. Lett. 121 026403
41 Budich J C, Carlstr\"om J, Kunst F K and Bergholtz E J 2019 Phys. Rev. B 99 041406
42 Yang Z S and Hu J P 2019 Phys. Rev. B 99 081102
43 Liu C H, Jiang H and Chen S 2019 Phys. Rev. B 99 125103
44 Chen Y and Zhai H 2018 Phys. Rev. B 98 245130
45 Yoshida T, Peters R, Kawakami N and Hatsugai Y 2019 Phys. Rev. B 99 121101
46 Wu Y, Liu W Q, Geng J P, Song X R, Ye X Y, Duan C K, Rong X and Du J F 2019 Science 364 878
47 Zeng Q B, Zhu B G, Chen S, You L and L\"u R 2016 Phys. Rev. A 94 022119
48 Li C, Zhang X Z, Zhang G and Song Z 2018 Phys. Rev. B 97 115436
49 Kawabata K, Ashida Y, Katsura H and Ueda M 2018 Phys. Rev. B 98 085116
50 Xu Y, Wang S T and Duan L M 2017 Phys. Rev. Lett. 118 045701
51 Gong Z P, Ashida Y, Kawabata K, Takasan K, Higashikawa S and Ueda M 2018 Phys. Rev. X 8 031079
52 Regensburger A, Bersch C, Miri M A, Onishchukov G, Christodoulides D N and Peschel U 2012 Nature 488 167
53 Wang X R, Guo C X and Kou S P 2020 Phys. Rev. B 101 121116
54 Harari G, Bandres M A, Lumer Y, Rechtsman M C, Chong Y D, Khajavikhan M, Christodoulides D N and Segev M 2018 Science 359 eaar4003
55 Bandres M A, Wittek S, Harari G, Parto M, Ren J, Segev M, Chritodoulides D N and Khajavikhan M 2018 Science 359 eaar4005
56 Bahari B, Ndao A, Vallini F, Amili A E, Fainman Y and Kant\'e B 2017 Science 358 636
57 Mochizuki K, Kim D and Obuse H 2016 Phys. Rev. A 93 062116
58 Song F, Yao S Y and Wang Z 2019 Phys. Rev. Lett. 123 170401
59 Pan L, Wang X L, Cui X L and Chen S 2020 Phys. Rev. A 102 023306
60 Diehl S, Rico E, Baranov M A and Zoller P 2011 Nat. Phys. 7 971
61 Verstraete F, Wolf M M and Ignacio Cirac J I 2009 Nat. Phys. 5 633
62 Rudner M S and Levitov L S 2009 Phys. Rev. Lett. 102 065703
63 Zeuner J M, Rechtsman M C, Plotnik Y, Lumer Y, Nolte S, Rudner M S, Segev M and Szameit A 2015 Phys. Rev. Lett. 115 040402
64 Atala M, Aidelsburger M, Barreiro J T, Abanin D, Kitagawa T, Demler E and Bloch I 2013 Nat. Phys. 9 795
65 Tomita T, Nakajima S, Danshita I, Takasu Y and Takahashi Y 2017 Sci. Adv. 3 e1701513
66 Tomita T, Nakajima S, Takasu Y and Takahashi Y 2019 Phys. Rev. A 99 031601(R)
67 Jacqmin T, Carusotto I, Sagnes I, Abbarchi M, Solnyshkov D D, Malpuech G, Galopin E, Lema\itre A,, Bloch J and Amo A 2014 Phys. Rev. Lett. 112 116402
69 Gao T, Estrecho E, Bliokh K Y, Liew T C H, Fraser M D, Brodbeck S, Kamp M, Schneider C, H\"ofling S, Yamamoto Y, Nori F and Kivshar Y S 2015 Nature 526 554
70 Martinez Alvarez V M, Barrios Vargas J E, Berdakin M and Foa Torres L E 2018 Eur. Phys. J. Spec. Top. 227 1295
71 Leykam D, Bliokh K Y, Huang C, Chong Y D and Nori F 2017 Phys. Rev. Lett. 118 040401
72 Xiong Y 2018 J. Phys. Commun. 2 035043
73 Martinez Alvarez V M, Barrios Vargas J E and Foa Torres L E F 2018 Phys. Rev. B 97 121401
74 Jin L and Song Z 2019 Phys. Rev. B 99 081103
75 Herviou L, Bardarson J H and Regnault N 2019 Phys. Rev. A 99 052118
77 Deng T S and Yi W 2019 Phys. Rev. B 100 035102
78 Lee T E 2016 Phys. Rev. Lett. 116 133903
79 Yao S Y and Wang Z 2018 Phys. Rev. Lett. 121 086803
80 Yokomizo K and Murakami S 2019 Phys. Rev. Lett. 123 066404
81 Borgnia D S, Kruchkov A J and Slager R J 2020 Phys. Rev. Lett. 124 056802
82 Zhang K, Yang Z S and Fang C 2020 Phys. Rev. Lett. 125 126402
83 Yang Z H, Zhang K, Fang C and Hu J P 2020 arXiv: 1912.05499 [cond-mat.mes-hall])
84 Yi Y F and Yang Z S 2020 Phys. Rev. Lett. 125 186802)
85 Kunst F K, Edvardsson E, Budich J C and Bergholtz E J 2018 Phys. Rev. Lett. 121 026808
86 Song F, Yao S Y and Wang Z 2019 Phys. Rev. Lett. 123 246801
87 Zhan X, Xiao L, Bian Z H, Wang K K, Qiu X Z, Sanders B C, Yi W and Xue P 2017 Phys. Rev. Lett. 119 130501
88 Xiao L, Deng T S, Wang K K, Zhu G Y, Wang Z, Yi W and Xue P 2020 Nat. Phys. 16 761
89 Xiao L, Zhan X, Bian Z H, Wang K K, Zhang X, Wang X P, Li J, Mochizuki K, Kim D, Kawakami N, Yi W, Obuse H, Sanders B C and Xue P 2017 Nat. Phys. 13 1117
90 Chiu C K, Teo J C Y, Schnyder A P and Ryu S 2016 Rev. Mod. Phys. 88 035005
91 Hafezi M, Demler E A, Lukin M D and Taylor J M 2011 Nat. Phys. 7 907
92 Viyuela O, Vodola D, Pupillo G and Martin-Delgado M A 2016 Phys. Rev. B 94 125121
[1] Quantum search of many vertices on the joined complete graph
Tingting Ji(冀婷婷), Naiqiao Pan(潘乃桥), Tian Chen(陈天), and Xiangdong Zhang(张向东). Chin. Phys. B, 2022, 31(7): 070504.
[2] Efficient quantum private comparison protocol based on one direction discrete quantum walks on the circle
Jv-Jie Wang(王莒杰), Zhao Dou(窦钊), Xiu-Bo Chen(陈秀波), Yu-Ping Lai(赖裕平), and Jian Li(李剑). Chin. Phys. B, 2022, 31(5): 050308.
[3] Quantum walk search algorithm for multi-objective searching with iteration auto-controlling on hypercube
Yao-Yao Jiang(姜瑶瑶), Peng-Cheng Chu(初鹏程), Wen-Bin Zhang(张文彬), and Hong-Yang Ma(马鸿洋). Chin. Phys. B, 2022, 31(4): 040307.
[4] Quantum transport signatures of non-trivial topological edge states in a ring-shaped Su-Schrieffer-Heeger double-chain system
Cheng-Zhi Ye(叶成芝), Lan-Yun Zhang(张蓝云), and Hai-Bin Xue(薛海斌). Chin. Phys. B, 2022, 31(2): 027304.
[5] Change-over switch for quantum states transfer with topological channels in a circuit-QED lattice
Liu-Yong Cheng(程留永), Li-Na Zheng(郑黎娜), Ruixiang Wu(吴瑞祥), Hong-Fu Wang(王洪福), and Shou Zhang(张寿). Chin. Phys. B, 2022, 31(2): 020305.
[6] Topological photonic states in gyromagnetic photonic crystals: Physics, properties, and applications
Jianfeng Chen(陈剑锋) and Zhi-Yuan Li(李志远). Chin. Phys. B, 2022, 31(11): 114207.
[7] Disorder in parity-time symmetric quantum walks
Peng Xue(薛鹏). Chin. Phys. B, 2022, 31(1): 010311.
[8] Efficient and stable wireless power transfer based on the non-Hermitian physics
Chao Zeng(曾超), Zhiwei Guo(郭志伟), Kejia Zhu(祝可嘉), Caifu Fan(范才富), Guo Li(李果), Jun Jiang(江俊), Yunhui Li(李云辉), Haitao Jiang(江海涛), Yaping Yang(羊亚平), Yong Sun(孙勇), and Hong Chen(陈鸿). Chin. Phys. B, 2022, 31(1): 010307.
[9] Floquet bands and photon-induced topological edge states of graphene nanoribbons
Weijie Wang(王威杰), Xiaolong Lü(吕小龙), and Hang Xie(谢航). Chin. Phys. B, 2021, 30(6): 066701.
[10] Quantum walk under coherence non-generating channels
Zishi Chen(陈子石) and Xueyuan Hu(胡雪元). Chin. Phys. B, 2021, 30(3): 030305.
[11] State transfer on two-fold Cayley trees via quantum walks
Xi-Ling Xue(薛希玲) and Yue Ruan(阮越). Chin. Phys. B, 2021, 30(2): 020304.
[12] Erratum to “Floquet bands and photon-induced topological edge states of graphene nanoribbons”
Weijie Wang(王威杰), Xiaolong Lü(吕小龙), and Hang Xie(谢航). Chin. Phys. B, 2021, 30(11): 119901.
[13] High winding number of topological phase in non-unitary periodic quantum walk
Yali Jia(贾雅利) and Zhi-Jian Li(李志坚). Chin. Phys. B, 2021, 30(10): 100301.
[14] Edge states enhanced by long-range hopping: An analytical study
Huiping Wang(王会平), Li Ren(任莉), Liguo Qin(秦立国), and Yueyin Qiu(邱岳寅). Chin. Phys. B, 2021, 30(10): 107301.
[15] Evidence for topological superconductivity: Topological edge states in Bi2Te3/FeTe heterostructure
Bin Guo(郭斌), Kai-Ge Shi(师凯歌), Hai-Lang Qin(秦海浪), Liang Zhou(周良), Wei-Qiang Chen(陈伟强), Fei Ye(叶飞), Jia-Wei Mei(梅佳伟), Hong-Tao He(何洪涛), Tian-Luo Pan(潘天洛), Gan Wang(王干). Chin. Phys. B, 2020, 29(9): 097403.
No Suggested Reading articles found!