Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(7): 076103    DOI: 10.1088/1674-1056/20/7/076103
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Surface-enhanced Raman scattering properties of highly ordered self-assemblies of gold nanorods with different aspect ratios

Shi Xue-Zhao(时雪钊)a)b), Shen Cheng-Min(申承民) b), Wang Deng-Ke(王登科)b)c), Li Chen(李晨)b), Tian Yuan(田园)b), Xu Zhi-Chuan(徐桎川)b), Wang Chun-Ming(王春明)a)†, and Gao Hong-Jun(高鸿钧)b)‡
a College of Chemistry and Engineering, Lanzhou University, Lanzhou 730000, China; b Institute of Physics, Chinese Academy of Sciences, Beijing 100190, Chinab School of Physical Science and Technology, Yunnan University, Kunming 650091, China
Abstract  Gold nanorods with aspect ratios of from 1 (particles) to 31.6 were synthesized by the seed-mediated method and packed in a highly ordered structure on a large scale on silicon substrates through capillary force induced self-assembly behaviour during solvent evaporation. The gold nanorod surface exhibits a strong enhancing effect on Raman scattering spectroscopy. The enhancement of Raman scattering for two model molecules (2-naphthalenethiol and rhodamine 6G) is about 5—6 orders of magnitude. By changing the aspect ratio of the Au nanorods, we found that the enhancement factors decreased with the increase of aspect ratios. The observed Raman scattering enhancement is strong and should be ascribed to the surface plasmon coupling between closely packed nanorods, which may result in huge local electromagnetic field enhancements in those confined junctions.
Keywords:  gold nanorods      surface plasmon resonance      self assemble      surface enhanced Raman scattering  
Received:  01 March 2011      Revised:  13 April 2011      Accepted manuscript online: 
PACS:  61.46.Km (Structure of nanowires and nanorods (long, free or loosely attached, quantum wires and quantum rods, but not gate-isolated embedded quantum wires))  
  74.25.nd (Raman and optical spectroscopy)  
  78.67.Qa (Nanorods)  
  87.64.kp (Raman)  

Cite this article: 

Shi Xue-Zhao(时雪钊), Shen Cheng-Min(申承民), Wang Deng-Ke(王登科), Li Chen(李晨), Tian Yuan(田园), Xu Zhi-Chuan(徐桎川), Wang Chun-Ming(王春明), and Gao Hong-Jun(高鸿钧) Surface-enhanced Raman scattering properties of highly ordered self-assemblies of gold nanorods with different aspect ratios 2011 Chin. Phys. B 20 076103

[1] Alekseeva A V, Bogatyrev V A, Dykman L A, Khlebtsov B N, Trachuk L A, Melnikov A G and Khlebtsov N G 2005 Appl. Opt. 44 628
[2] Yu C and Irudayaraj J 2007 Anal. Chem. 79 572
[3] Malic L, Cui B, Veres T and Tabrizian M 2007 Opt. Lett. 32 3092
[4] Nikoobakht B and El-Sayed M A 2003 J. Phys. Chem. A 107 3372
[5] Gole A, Orendorff C J and Murphy C J 2004 Langmuir 20 7117
[6] Laurent G, F'elidj N, Aubard J, L'evia G, Krenn J R, Hohenau A, Schider G, Leitner A and Aussenegg F R 2005 J. Chem. Phys. 122 011102
[7] Huff T B, Tong L, Zhao Y, Hansen M N, Cheng J X and Wei A 2007 Nanomedicine 2 125
[8] Aslan K, Lakowicz J R and Geddes C D 2005 J. Phys. Chem. B 109 6247
[9] Alvarez-Puebla R A, dos Santos Jr D S and Aroca R F 2004 Analyst 129 1251
[10] Nie S M and Emory S R 1997 Science 275 1102
[11] Michaels A M, Nirmal M and Brus L E 1999 J. Am. Chem. Soc. 121 9932
[12] Krug J T, Wang G D, Emory S R and Nie S M 1999 J. Am. Chem. Soc. 121 9208
[13] Emory S R and Nie S M 1997 Anal. Chem. 69 2631
[14] Doering W E and Nie S M 2002 J. Phys. Chem. B 106 311
[15] Emory S R, Haskins W E and Nie S M 1998 J. Am. Chem. Soc. 129 8009
[16] Zhang S Z, Ni W H, Kou X S, Yeung M H, Sun L D, Wang J F and Yan C H 2007 Adv. Funct. Mater. 17 3258
[17] Sabur A, Havel M and Gogotsi Y 2008 J. Raman Spectrosc. 39 61
[18] cClha M C, Kahraman M, Tokman N and Türkoglu G 2008 J. Phys. Chem. C 112 10338
[19] Michaels A M, Jiang J and Brus L 2000 J. Phys. Chem. B 104 11965
[20] Schwartzberg A M, Grant C D, Wolcott A, Talley C E, Huser T R, Bogomolni R and Zhang J Z 2004 J. Phys. Chem. B 108 19191
[21] Jiang J, Bosnick K, Maillard M and Brus L 2003 J. Phys. Chem. B 107 9964
[22] Kim T, Lee K, Gong M S and Joo S W 2005 Langmuir 21 9524
[23] Ueno K, Mizeikis V, Juodkazis S, Sasaki K and Misawa H 2005 Opt. Lett. 30 2158
[24] Gou L F and Murphy C J 2005 Chem. Mater. 17 3668
[25] Lee K S and El-Sayed M 2006 J. Phys. Chem. B 110 19220
[26] Lee K S and El-Sayed M A 2005 J. Phys. Chem. B 109 20331
[27] Tridib K S and Arun C 2004 Langmuir 20 3520
[28] Yang Y, Matsubara S, Nogami M, Shi J L and Huang W M 2006 Nanotechnology 17 2821
[29] Link S and El-Sayed M 1999 J. Phys. Chem. B 103 8410
[30] Chaneya S B, Shanmukh S, Dluhy R A and Zhao Y P 2005 Appl. Phys. Lett. 87 031908
[31] Orendorff C J, Gearheart L, Janaz N R and Murphy C J 2006 Phys. Chem. Chem. Phys. 8 165
[32] Orendorff C J, Gole A, Sau T K and Murphy C J 2005 Anal. Chem. 77 3261
[33] Jana N R, Gearheart L and Murphy C J 2001 J. Phys. Chem. B 105 4065
[34] Xu Z C, Shen C M, Xiao C W, Yang T Z, Zhang H R, Li J Q, Li H L and Gao H J 2007 Nanotechnology 18 115608
[35] Xu Z C, Shen C M, Xiao C W, Yang T Z, Chen S T, Li H L and Gao H J 2006 Chem. Phys. Lett. 432 222
[36] Sun Y G and Xia Y N 2002 Science 298 2176
[37] Maryuri R and Haes A J 2008 J. Am. Chem. Soc. 130 14273
[38] Shen C M, Hui C, Yang T Z, Xiao C W, Tian J F, Bao L H, Chen S T, Ding H and Gao H J 2008 Chem. Mater. 20 6939
[39] Hildebrandt P and Stockburger M 1984 J. Phys. Chem. 88 5935
[40] Lu Y, Liu G L, Kim J, Mejia Y X and Lee L P 2005 Nano Lett. 5 119
[41] Taylor C E, Pemberton J E, Goodman G G and Schoenfisch M H 1999 Appl. Spectrosc. 53 1212
[42] Voshchinnikov N V and Farafonov V G 1993 Astrophys. Space Sci. 204 19
[43] Kelly K L, Coronado E, Zhao L L and Schatz G C 2003 J. Phys. Chem. B 107 668
[1] Numerical simulation of a truncated cladding negative curvature fiber sensor based on the surface plasmon resonance effect
Zhichao Zhang(张志超), Jinhui Yuan(苑金辉), Shi Qiu(邱石), Guiyao Zhou(周桂耀), Xian Zhou(周娴), Binbin Yan(颜玢玢), Qiang Wu(吴强), Kuiru Wang(王葵如), and Xinzhu Sang(桑新柱). Chin. Phys. B, 2023, 32(3): 034208.
[2] Fiber cladding dual channel surface plasmon resonance sensor based on S-type fiber
Yong Wei(魏勇), Xiaoling Zhao(赵晓玲), Chunlan Liu(刘春兰), Rui Wang(王锐), Tianci Jiang(蒋天赐), Lingling Li(李玲玲), Chen Shi(石晨), Chunbiao Liu(刘纯彪), and Dong Zhu(竺栋). Chin. Phys. B, 2023, 32(3): 030702.
[3] Dual-channel fiber-optic surface plasmon resonance sensor with cascaded coaxial dual-waveguide D-type structure and microsphere structure
Ling-Ling Li(李玲玲), Yong Wei(魏勇), Chun-Lan Liu(刘春兰), Zhuo Ren(任卓), Ai Zhou(周爱), Zhi-Hai Liu(刘志海), and Yu Zhang(张羽). Chin. Phys. B, 2023, 32(2): 020702.
[4] Numerical study of a highly sensitive surface plasmon resonance sensor based on circular-lattice holey fiber
Jian-Fei Liao(廖健飞), Dao-Ming Lu(卢道明), Li-Jun Chen(陈丽军), and Tian-Ye Huang(黄田野). Chin. Phys. B, 2022, 31(6): 060701.
[5] Multi-frequency focusing of microjets generated by polygonal prisms
Yu-Jing Yang(杨育静), De-Long Zhang(张德龙), and Ping-Rang Hua(华平壤). Chin. Phys. B, 2022, 31(3): 034201.
[6] Sensitivity improvement of aluminum-based far-ultraviolet nearly guided-wave surface plasmon resonance sensor
Tianqi Li(李天琦), Shujing Chen(陈淑静), and Chengyou Lin(林承友). Chin. Phys. B, 2022, 31(12): 124208.
[7] Photonic spin Hall effect and terahertz gas sensor via InSb-supported long-range surface plasmon resonance
Jie Cheng(程杰), Gaojun Wang(王高俊), Peng Dong(董鹏), Dapeng Liu(刘大鹏), Fengfeng Chi(迟逢逢), and Shengli Liu(刘胜利). Chin. Phys. B, 2022, 31(1): 014205.
[8] A multi-band and polarization-independent perfect absorber based on Dirac semimetals circles and semi-ellipses array
Zhiyou Li(李治友), Yingting Yi(易颖婷), Danyang Xu(徐丹阳), Hua Yang(杨华), Zao Yi(易早), Xifang Chen(陈喜芳), Yougen Yi(易有根), Jianguo Zhang(张建国), and Pinghui Wu(吴平辉). Chin. Phys. B, 2021, 30(9): 098102.
[9] Surface plasmon polaritons frequency-blue shift in low confinement factor excitation region
Ling-Xi Hu(胡灵犀), Zhi-Qiang He(何志强), Min Hu(胡旻), and Sheng-Gang Liu(刘盛纲). Chin. Phys. B, 2021, 30(8): 084102.
[10] Optical absorption tunability and local electric field distribution of gold-dielectric-silver three-layered cylindrical nanotube
Ye-Wan Ma(马业万), Zhao-Wang Wu(吴兆旺), Yan-Yan Jiang(江燕燕), Juan Li(李娟), Xun-Chang Yin(尹训昌), Li-Hua Zhang(章礼华), and Ming-Fang Yi(易明芳). Chin. Phys. B, 2021, 30(11): 114207.
[11] Controlled plasmon-enhanced fluorescence by spherical microcavity
Jingyi Zhao(赵静怡), Weidong Zhang(张威东), Te Wen(温特), Lulu Ye(叶璐璐), Hai Lin(林海), Jinglin Tang(唐靖霖), Qihuang Gong(龚旗煌), and Guowei Lyu(吕国伟). Chin. Phys. B, 2021, 30(11): 114215.
[12] Cascaded dual-channel fiber SPR temperature sensor based on liquid and solid encapsulations
Yong Wei(魏勇), Lingling Li(李玲玲), Chunlan Liu(刘春兰), Jiangxi Hu(胡江西), Yudong Su(苏于东), Ping Wu(吴萍), and Xiaoling Zhao(赵晓玲). Chin. Phys. B, 2021, 30(10): 100701.
[13] Photocurrent improvement of an ultra-thin silicon solar cell using the localized surface plasmonic effect of clustering nanoparticles
F Sobhani, H Heidarzadeh, H Bahador. Chin. Phys. B, 2020, 29(6): 068401.
[14] Tunability of Fano resonance in cylindrical core-shell nanorods
Ben-Li Wang(王本立). Chin. Phys. B, 2020, 29(4): 045202.
[15] Processes underlying the laser photochromic effect in colloidal plasmonic nanoparticle aggregates
A E Ershov, V S Gerasimov, I L Isaev, A P Gavrilyuk, S V Karpov. Chin. Phys. B, 2020, 29(3): 037802.
No Suggested Reading articles found!