Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(2): 027701    DOI: 10.1088/1674-1056/abc15a
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Sr-doping effects on conductivity, charge transport, and ferroelectricity of Ba0.7La0.3TiO3 epitaxial thin films

Qiang Li(李强)1, 2, Dao Wang(王岛)1, 2, Yan Zhang(张岩)1,2, Yu-Shan Li(李育珊)1, 2, Ai-Hua Zhang(张爱华)1,2,†, Rui-Qiang Tao(陶瑞强)1, 2, Zhen Fan(樊贞)1, 2, Min Zeng(曾敏)1, 2, Guo-Fu Zhou(周国富)2, 3, Xu-Bing Lu(陆旭兵)1, 2,‡, and Jun-Ming Liu(刘俊明)1, 4
1 Institute for Advanced Materials, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, China; 2 Guangdong Provincial Key Laboratory of Optical Information Materials, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, China; 3 National Center for International Research on Green Optoelectronics, South China Normal University, Guangzhou 510006, China; 4 Laboratory of Solid State Microstructures and Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210009, China
Abstract  Sr-doped Ba0.7La0.3TiO3 (BSLTO) thin films are deposited by pulsed laser deposition, and their microstructure, conductivity, carrier transport mechanism, and ferroelectricity are systematically investigated. The x-ray diffraction measurements demonstrate that Sr-doping reduces the lattice constant of BSLTO thin films, resulting in the enhanced phonon energy in the films as evidenced by the Raman measurements. Resistivity-temperature and Hall effect measurements demonstrate that Sr can gradually reduce electrical resistivity while the electron concentration remains almost unchanged at high temperatures. For the films with semiconducting behavior, the charge transport model transforms from variable range hopping to small polaron hopping as the measurement temperature increases. The metalic conductive behaviors in the films with Sr=0.30, 0.40 conform to thermal phonon scattering mode. The difference in charge transport behavior dependent on the A-site cation doping, is clarified. It is revealed that the increasing of phonon energy by Sr doping is responsible for lower activation energy of small polaron hopping, higher carrier mobility, and lower electrical resistivity. Interestingly, the piezoelectric force microscopy (PFM) results demonstrate that all the BSLTO films can exhibit ferroelectricity, especially for the room temperature metallic conduction film with Sr=0.40. These results imply that Sr-doping could be a potential way to explore ferroelectric metal materials for other perovskite oxides.
Keywords:  Sr-doping      transport mechanism      BSLTO thin film      ferroelectric metal  
Received:  12 August 2020      Revised:  30 September 2020      Accepted manuscript online:  15 October 2020
PACS:  77.55.fe (BaTiO3-based films)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 51872099), the Science and Technology Program of Guangzhou, China (Grant No. 2019050001), the Fund from the Guangdong Provincial Key Laboratory of Optical Information Materials and Technology, China (Grant No. 2017B030301007), and the 111 Project, China. Xu-Bing Lu, one of authors, was sponsored by the Project for Guangdong Province Universities and Colleges Pearl River Scholar Funded Scheme, China (2016).
Corresponding Authors:  Corresponding author. E-mail: zhangah1110@163.com Corresponding author. E-mail: luxubing@m.scnu.edu.cn   

Cite this article: 

Qiang Li(李强), Dao Wang(王岛), Yan Zhang(张岩), Yu-Shan Li(李育珊), Ai-Hua Zhang(张爱华), Rui-Qiang Tao(陶瑞强), Zhen Fan(樊贞), Min Zeng(曾敏), Guo-Fu Zhou(周国富), Xu-Bing Lu(陆旭兵), and Jun-Ming Liu(刘俊明) Sr-doping effects on conductivity, charge transport, and ferroelectricity of Ba0.7La0.3TiO3 epitaxial thin films 2021 Chin. Phys. B 30 027701

1 Kingon A I, Streiffer S K, Basceri C and Summerfelt S R 1996 MRS Bull. 21 46
2 Zhang F, Lin Y B, Wu H, Miao Q, Gong J J, Chen J P, Wu S J, Zeng M, Gao X S and Liu J M 2014 Chin. Phys. B 23 027702
3 Hou C M, Huang W C, Zhao W B, Zhang D L, Yin Y W and Li X G 2017 ACS Appl. Mater. Interfaces 9 20484
4 Nagano D, Funakubo H, Shinozaki K and Mizutani N 1998 Appl. Phys. Lett. 72 2017
5 Wang H H, Cui D F, Dai S Y, Lu H B, Zhou Y L, Chen Z H and Yang G Z 2001 J. Appl. Phys. 90 4664
6 Zhang L, Li N, Wang H Q, Zhang Y F, Ren F, Liao X X, Li Y P, Wang X D, Huang Z, Dai Y, Hao Y and Zheng J C 2017 Chin. Phys. B 26 016602
7 Won C J, Park Y A, Lee K D, Ryu H Y and Hur N 2011 J. Appl. Phys. 109 084108
8 Jin Q, Zheng C Y, Zhang Y C, Lu C J, Dai J Y and Wen Z 2017 Appl. Phys. Lett. 111 032902
9 Ohta H, Kim S, Mune Y, Mizoguchi T, Nomura K, Ohta S, Nomura T, Nakanishi Y, Ikuhara Y and Hirano M, et al. 2007 Nat. Mater. 6 129
10 Gervais F, Servoin J L, Baratoff A, Bednorz J G and Binnig G 1993 Phys. Rev. B 47 8187
11 Suzuki H, Bando H, Ootuka Y, Inoue I H, Yamamoto T, Takahashi K and Nishihara Y 1996 J. Phys. Soc. Jpn. 65 1529
12 Marucco J F, Ocio M, Forget A and Colson D 1997 J. Alloys Compd. 262-263 454
13 Hwang J, Kolodiazhnyi T, Yang J and Couillard M 2010 Phys. Rev. B 82 214109
14 Ohtomo A and Hwang H Y 2007 J. Appl. Phys. 102 083704
15 Kolodiazhnyi T and Wimbush S C 2006 Phys. Rev. Lett. 96 246404
16 Kolodiazhnyi T, Tachibana M, Kawaji H, Hwang J and Takayama-Muromachi E 2010 Phys. Rev. Lett. 104 147602
17 Takahashi K S, Matsubara Y, Bahramy M S, Ogawa N, Hashizume D, Tokura Y and Kawasaki M 2017 Sci. Rep. 7 4631
18 Subarwanti Y, Safitri R D, Supriyanto A, Iriani Y and Jamaludin A 2017 IOP Conf. Ser.: Mater. Sci. Eng. 176 012044
19 Huang T C, Wang M T, Sheu H S and Hsieh W F 2007 J. Phys.: Condens. Matter. 19 476212
20 Guo H Z, Chen Z H, Cheng B L, Lu H B, Liu L F and Zhou Y L 2005 J. Eur. Ceram. Soc. 25 2347
21 Zhang J J, Zhai J W, Chou X J, Shao J, Lu X and Yao X 2009 Acta Mater. 57 4491
22 Morrison F D, Coats A M, Sinclair D C and West A R 2001 J. Electroceram. 6 219
23 Li Q, Zhang A H, Gao D, Guo M, Feng J J, Zeng M, Fan Z, Chen D Y, Gao X S, Zhou G F, Lu X B and Liu J M 2019 Appl. Phys. Lett. 114 202902
24 Zhang A H, Li Q, Gao D, Guo M, Feng J J, Zeng M, Fan Z, Chen D Y, Gao X S, Zhou G F, Lu X B and Liu J M 2020 J. Phys. D: Appl. Phys. 53 075305
25 Sun Y, Xu X J and Zhang Y H 2000 J. Phys.: Condens. Matter 12 10475
26 Liu L F, Guo H Z, L\"u H B, Dai S Y, Cheng B L and Chen Z H 2005 J. Appl. Phys. 97 054102
27 Austin I G and Mott N F 1969 Adv. Phys. 18 41
28 Ihrig H 1976 J. Phys. C: Solid State Phys. 9 3649
[1] High performance lateral Schottky diodes based on quasi-degenerated Ga2O3
Yang Xu(徐阳), Xuanhu Chen(陈选虎), Liang Cheng(程亮), Fang-Fang Ren(任芳芳), Jianjun Zhou(周建军), Song Bai(柏松), Hai Lu(陆海), Shulin Gu(顾书林), Rong Zhang(张荣), Youdou Zheng(郑有炓), Jiandong Ye(叶建东). Chin. Phys. B, 2019, 28(3): 038503.
[2] Mechanism of Ti/Al/Ni/Au ohmic contacts to AlGaN/GaN heterostructures via laser annealing
Mingchen Hou(侯明辰), Gang Xie(谢刚), Kuang Sheng(盛况). Chin. Phys. B, 2019, 28(3): 037302.
[3] Lithium-ion transport in inorganic solid state electrolyte
Jian Gao(高健), Yu-Sheng Zhao(赵予生), Si-Qi Shi(施思齐), Hong Li(李泓). Chin. Phys. B, 2016, 25(1): 018211.
[4] Thermoelectric properties of Sr0.61Ba0.39Nb2O6 -δ ceramics in different oxygen-reduction conditions
Li Yi (李宜), Liu Jian (刘剑), Wang Chun-Lei (王春雷), Su Wen-Bin (苏文斌), Zhu Yuan-Hu (祝元虎), Li Ji-Chao (李吉超), Mei Liang-Mo (梅良模). Chin. Phys. B, 2015, 24(4): 047201.
[5] Transport mechanism of reverse surface leakage current in AlGaN/GaN high-electron mobility transistor with SiN passivation
Zheng Xue-Feng (郑雪峰), Fan Shuang (范爽), Chen Yong-He (陈永和), Kang Di (康迪), Zhang Jian-Kun (张建坤), Wang Chong (王冲), Mo Jiang-Hui (默江辉), Li Liang (李亮), Ma Xiao-Hua (马晓华), Zhang Jin-Cheng (张进成), Hao Yue (郝跃). Chin. Phys. B, 2015, 24(2): 027302.
[6] Schottky forward current transport mechanisms in AlGaN/GaN HEMTs over a wide temperature range
Wu Mei (武玫), Zheng Da-Yong (郑大勇), Wang Yuan (王媛), Chen Wei-Wei (陈伟伟), Zhang Kai (张凯), Ma Xiao-Hua (马晓华), Zhang Jin-Cheng (张进成), Hao Yue (郝跃). Chin. Phys. B, 2014, 23(9): 097307.
[7] Comparison of electrical characteristic between AlN/GaN and AlGaN/GaN heterostructure Schottky diodes
Lü Yuan-Jie (吕元杰), Feng Zhi-Hong (冯志红), Lin Zhao-Jun (林兆军), Gu Guo-Dong (顾国栋), Dun Shao-Bo (敦少博), Yin Jia-Yun (尹甲运), Han Ting-Ting (韩婷婷), Cai Shu-Jun (蔡树军). Chin. Phys. B, 2014, 23(2): 027101.
No Suggested Reading articles found!