Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(6): 064702    DOI: 10.1088/1674-1056/23/6/064702
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Critical condition for the transformation from Taylor cone to cone-jet

Wei Cheng (魏承)a, Gang Tie-Qiang (冮铁强)b, Chen Li-Jie (陈立杰)b, Zhao Yang (赵阳)a
a Department of Aerospace Engineering, Harbin Institute of Technology, Harbin 150001, China;
b School of Physics and Mechanical & Electrical Engineering, Xiamen University, Xiamen 361005, China
Abstract  An energy method is proposed to investigate the critical transformation condition from a Taylor cone to a cone-jet. Based on the kinetic theorem, the system power allocation and the electrohydrodynamics stability are discussed. The numerical results indicate that the energy of the liquid cone tip experiences a maximum value during the transformation. With the proposed jetting energy, we give the critical transformation condition under which the derivative of jetting energy with respect to the surface area is greater than or equal to the energy required to form a unit of new liquid surface.
Keywords:  Taylor cone      cone-jet      electrohydrodynamics      numerical computation  
Received:  23 July 2013      Revised:  02 December 2013      Accepted manuscript online: 
PACS:  47.20.Dr (Surface-tension-driven instability)  
  47.55.db (Drop and bubble formation)  
  47.55.nb (Capillary and thermocapillary flows)  
  47.65.-d (Magnetohydrodynamics and electrohydrodynamics)  
Fund: Project supported by the National Basic Research Program of China (Grant No. 2013CB733004).
Corresponding Authors:  Gang Tie-Qiang, Chen Li-Jie     E-mail:  gangtq@xmu.edu.cn;chenlijie@xmu.edu.cn

Cite this article: 

Wei Cheng (魏承), Gang Tie-Qiang (冮铁强), Chen Li-Jie (陈立杰), Zhao Yang (赵阳) Critical condition for the transformation from Taylor cone to cone-jet 2014 Chin. Phys. B 23 064702

[1] Lord Rayleigh 1882 Phil. Mag. 14 184
[2] Lord Rayleigh 1916 Phil. Mag. 31 177
[3] Peters J M H 1980 Eur. J. Phys. 1 143
[4] Xiang J, Shen X Q, Song F Z and Liu M Q 2009 Chin. Phys. B 18 4960
[5] Li M M, Long Y Z, Tan J S, Yin H X, Sui W M and Zhang Z M 2010 Chin. Phys. B 19 028102
[6] Zhang Z H, Long Y Z, Yin H X, Sun B, Zheng J, Zhang H D, Ji X M and Gu C Z 2012 Chin. Phys. B 21 097805
[7] Zeleny J 1914 Phys. Rev. 3 69
[8] Zeleny J 1915 Proc. Camb. Phil. Soc. 18 71
[9] Zeleny J 1917 Phys. Rev. 10 1
[10] Taylor G I 1964 Proc. R. Soc. A 280 383
[11] Gañán-Calvo A M 2000 Phys. Rev. Lett. 85 1234
[12] Fernández de la Mora J 1996 J. Colloid Interface Sci. 186 280
[13] Higuera F 2003 J. Fluid Mech. 484 303
[14] Collins R T, Jones J J, Harris M T and Basaran O A 2008 Nat. Phys. 4 149
[15] Tsamopoulos J A, Akylas T R and Brown R A 1985 Proc. Roy. Soc. Lond. Ser. A 401 67
[16] Taflin D C, Ward T. L and Davis E J 1989 Langmuir 5 376
[17] Davis E J and Bridges M A 1994 J. Aerosol. Sci. 25 1179
[18] Hager D B and Dovichi N J 1994 Anal. Chem. 66 1593
[19] Hager D B, Dovichi N J, Klassen J and Kebarle P 1994 Anal. Chem. 66 3944
[20] Widmann J F and Davis E J 1996 Colloid Polym. Sci. 274 525
[21] Duft D, Achtzehn T, R, Huber B A and Leisner T 2003 Nature 421 128
[22] Achtzehn T, Müller R, Duft D and Leisnera T 2005 Eur. Phys. J. D 34 311
[23] Barrero A and Loscertales I 2007 Ann. Rev. Fluid Mech. 39 89
[24] Fernández de la Mora J 2007 Ann. Rev. Fluid Mech. 39 217
[25] Melcher J R and Taylor G I 1969 Ann. Rev. Fluid Mech. 1 111
[26] Melcher J R 1981 Continuum Electromechanics (Cambridge, MA: MIT Press) p. 5.2
[27] Saville D A 1997 Ann. Rev. Fluid Mech. 29 27
[28] Castellanos A (Ed.) 1998 Electrohydrodyamics (Berlin: Springer) p. 4
[29] Temam R 2005 Mathematical Modeling in Continuum Mechanics, 2nd edn. (New York: Cambridge University Press) p. 67
[1] Electrohydromechanical analysis based on conductivity gradient in microchannel
Jiang Hong-Yuan(姜洪源), Ren Yu-Kun(任玉坤), Ao Hong-Rui (敖宏瑞), Antonio Ramos. Chin. Phys. B, 2008, 17(12): 4541-4546.
[2] New equation of turbulent fibre suspensions and its solution and application to the pipe flow
Lin Jian-Zhong (林建忠), Li Jun (李俊), Zhu Li (朱力), Olson James A.. Chin. Phys. B, 2005, 14(6): 1185-1192.
No Suggested Reading articles found!