Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(2): 024206    DOI: 10.1088/1674-1056/20/2/024206
CLASSICAL AREAS OF PHENOMENOLOGY Prev   Next  

Investigation on the hydrodynamics of slab x-ray laser plasma by nonuiform line focused laser irradiation

Cheng Tao(程涛),Li Ying-Jun(李英骏),Meng Li-Min(孟立民),and Li Xi-Bo(李希波)
China University of Mining and Technology, Beijing 100083, China
Abstract  Based on the two-dimensional model, this paper compares the hydrodynamics of slab x-ray laser plasma produced by different nonuniform line focused irradiations. It finds that the average intensity and the duration of laser pulse and the overall shape of the intensity distribution in the focal line have different influences on the plasma. Calculations show that the evolution of temperature variation is more sensitive to the pulse duration and the electron density variation is more sensitive to the pulse intensity. Pulses with duration of 200 ps to 500 ps and with intensity of 0.2 TW/cm2 to 1.0 TW/cm2 are proved acceptable in slab x-ray lasers.
Keywords:  plasma      slab x-ray laser      nonuniform line focused laser irradiation      hydrodynamics  
Received:  26 March 2010      Revised:  20 July 2010      Accepted manuscript online: 
PACS:  42.55.Vc (X- and γ-ray lasers)  
  52.25.-b (Plasma properties)  
Fund: Project suported by the National Natural Science Foundation of China (Grant No. 10874242), the National Basic Research Program of China (973 Program) (Grant No. 2007CB815105) and Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20070290008).

Cite this article: 

Cheng Tao(程涛),Li Ying-Jun(李英骏),Meng Li-Min(孟立民),and Li Xi-Bo(李希波) Investigation on the hydrodynamics of slab x-ray laser plasma by nonuiform line focused laser irradiation 2011 Chin. Phys. B 20 024206

[1] Matthews D L, Hagelstein P L, Rosen M D, Eckart M J, Ceglio N M, Hazi A U, Medecki H, MacGowan B J, Trebes J E, Kauffman B L, Plesance L D, Rambach G, Scofield J H, Stone G and Weaver T A 1985 Phys. Rev. Lett. 54 110
[2] Lee R W and Estabrook K G 1987 Phys. Rev. A 35 1269
[3] Griem H R 1986 Phys. Rev. A 33 3580
[4] Jamelot G, Carillon A, Klisnick A and Jaegle P 1990 Appl. Phys. B 50 239
[5] Burgess M D J, Dragila R, Luther-Davies B, Nugent K A, Perry A J, Tallents G J, Richardson M C and Craxton R S 1985 Phys. Rev. A 32 2899
[6] Xu Z Z, Chen S S, Lin L H, Jiang Z M, Zhang W Q and Qian A D 1989 Phys. Rev. A 39 808
[7] Kieffer J C, Chaker M, Pepin H, Baldis H A, Enright G D, Lafontaine B and Villeneuve D M 1991 Phys. Fluids B 33 463
[8] Lee T N, McLean E A and Elton R C 1987 Phys. Rev. Lett. 59 1185
[9] Boehly T, Russotto M, Craxton R S, Epstein R, Yaakobi B, Da Silva L B, Nilsen J, Chandler E A, Fields D J, MacGowan B J, Matthews D L, Scofield J H and Shimkaveg G 1990 Phys. Rev. A 42 6962
[10] Dunn J, Osterheld A L, Shepherd R, White W E, Shlyaptsev V N and Stewart R E 1998 Phys. Rev. Lett. 80 2825
[11] Zhang J, Machee A G, Lin J, Wolfrum E, Smith R, Danson C, Key M H, Lewis C L S, Neely D, Nilsen J, Pert G J, Tallents G J and Wark J S 1997 Science bf276 1097
[12] Keenan R, Dunn J, Patel P K, Price D F, Smith R F and Shlyaptsev V N 2005 Phys. Rev. Lett. 94 103901
[13] Ursescu D, Zielbauer B, Kuehl T and Neumayer P 2007 Phys. Rev. E 75 045401
[14] Li Y J and Zhang J 2001 Phys. Rev. E 63 036410
[15] Cheng T, Li Y J, Meng L M and Zhang J 2008 it Europhys. Lett. 84 45001
[16] Zheng W D and Zhang G P 2007 Chin. Phys. 16 2439
[1] Intense low-noise terahertz generation by relativistic laser irradiating near-critical-density plasma
Shijie Zhang(张世杰), Weimin Zhou(周维民), Yan Yin(银燕), Debin Zou(邹德滨), Na Zhao(赵娜), Duan Xie(谢端), and Hongbin Zhuo(卓红斌). Chin. Phys. B, 2023, 32(3): 035201.
[2] Ignition dynamics of radio frequency discharge in atmospheric pressure cascade glow discharge
Ya-Rong Zhang(张亚容), Qian-Han Han(韩乾翰), Jun-Lin Fang(方骏林), Ying Guo(郭颖), and Jian-Jun Shi(石建军). Chin. Phys. B, 2023, 32(2): 025201.
[3] Correction of intense laser-plasma interactions by QED vacuum polarization in collision of laser beams
Wen-Bo Chen(陈文博) and Zhi-Gang Bu(步志刚). Chin. Phys. B, 2023, 32(2): 025204.
[4] Time-resolved K-shell x-ray spectra of nanosecond laser-produced titanium tracer in gold plasmas
Zhencen He(何贞岑), Jiyan Zhang(张继彦), Jiamin Yang(杨家敏), Bing Yan(闫冰), and Zhimin Hu(胡智民). Chin. Phys. B, 2023, 32(1): 015202.
[5] Linear analysis of plasma pressure-driven mode in reversed shear cylindrical tokamak plasmas
Ding-Zong Zhang(张定宗), Xu-Ming Feng(冯旭铭), Jun Ma(马骏), Wen-Feng Guo(郭文峰), Yan-Qing Huang(黄艳清), and Hong-Bo Liu(刘洪波). Chin. Phys. B, 2023, 32(1): 015201.
[6] High sensitivity dual core photonic crystal fiber sensor for simultaneous detection of two samples
Pibin Bing(邴丕彬), Guifang Wu(武桂芳), Qing Liu(刘庆), Zhongyang Li(李忠洋),Lian Tan(谭联), Hongtao Zhang(张红涛), and Jianquan Yao(姚建铨). Chin. Phys. B, 2022, 31(8): 084208.
[7] Fundamental study towards a better understanding of low pressure radio-frequency plasmas for industrial applications
Yong-Xin Liu(刘永新), Quan-Zhi Zhang(张权治), Kai Zhao(赵凯), Yu-Ru Zhang(张钰如), Fei Gao(高飞),Yuan-Hong Song(宋远红), and You-Nian Wang(王友年). Chin. Phys. B, 2022, 31(8): 085202.
[8] Physical aspects of magnetized Jeffrey nanomaterial flow with irreversibility analysis
Fazal Haq, Muhammad Ijaz Khan, Sami Ullah Khan, Khadijah M Abualnaja, and M A El-Shorbagy. Chin. Phys. B, 2022, 31(8): 084703.
[9] Combination of spark discharge and nanoparticle-enhanced laser-induced plasma spectroscopy
Qing-Xue Li(李庆雪), Dan Zhang(张丹), Yuan-Fei Jiang(姜远飞), Su-Yu Li(李苏宇), An-Min Chen(陈安民), and Ming-Xing Jin(金明星). Chin. Phys. B, 2022, 31(8): 085201.
[10] Radiation effects of electrons on multilayer FePS3 studied with laser plasma accelerator
Meng Peng(彭猛), Jun-Bo Yang(杨俊波), Hao Chen(陈浩), Bo-Yuan Li(李博源), Xu-Lei Ge(葛绪雷), Xiao-Hu Yang(杨晓虎), Guo-Bo Zhang(张国博), and Yan-Yun Ma(马燕云). Chin. Phys. B, 2022, 31(8): 086102.
[11] Interaction between plasma and electromagnetic field in ion source of 10 cm ECR ion thruster
Hao Mou(牟浩), Yi-Zhou Jin(金逸舟), Juan Yang(杨涓), Xu Xia(夏旭), and Yu-Liang Fu(付瑜亮). Chin. Phys. B, 2022, 31(7): 075202.
[12] Plasma-wave interaction in helicon plasmas near the lower hybrid frequency
Yide Zhao(赵以德), Jinwei Bai(白进纬), Yong Cao(曹勇), Siyu Wu(吴思宇), Eduardo Ahedo, Mario Merino, and Bin Tian(田滨). Chin. Phys. B, 2022, 31(7): 075203.
[13] A nonlinear wave coupling algorithm and its programing and application in plasma turbulences
Yong Shen(沈勇), Yu-Hang Shen(沈煜航), Jia-Qi Dong(董家齐), Kai-Jun Zhao(赵开君), Zhong-Bing Shi(石中兵), and Ji-Quan Li(李继全). Chin. Phys. B, 2022, 31(6): 065206.
[14] Role of the zonal flow in multi-scale multi-mode turbulence with small-scale shear flow in tokamak plasmas
Hui Li(李慧), Jiquan Li(李继全), Zhengxiong Wang(王正汹), Lai Wei(魏来), and Zhaoqing Hu(胡朝清). Chin. Phys. B, 2022, 31(6): 065207.
[15] Influence of water environment on paint removal and the selection criteria of laser parameters
Li-Jun Zhang(张丽君), Kai-Nan Zhou(周凯南), Guo-Ying Feng(冯国英), Jing-Hua Han(韩敬华),Na Xie(谢娜), and Jing Xiao(肖婧). Chin. Phys. B, 2022, 31(6): 064205.
No Suggested Reading articles found!