Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(10): 108202    DOI: 10.1088/1674-1056/25/10/108202

Hydrodynamics of passing-over motion during binary droplet collision in shear flow

Cheng-Yao Wang(王程遥)1, Cheng-Bin Zhang(张程宾)1, Xiang-Yong Huang(黄庠永)2, Xiang-Dong Liu(刘向东)2, Yong-Ping Chen(陈永平)1,2
1 Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing 210096, China;
2 School of Hydraulic, Energy and Power Engineering, Yangzhou University, Yangzhou 225127, China
Abstract  A combined experimental and numerical study is undertaken to investigate the hydrodynamic characteristics of single-phase droplet collision in a shear flow. The passing-over motion of interactive droplets is observed, and the underlying hydrodynamic mechanisms are elucidated by the analysis of the motion trajectory, transient droplet deformation and detailed hydrodynamic information (e.g., pressure and flow fields). The results indicate that the hydrodynamic interaction process under shear could be divided into three stages: approaching, colliding, and separating. With the increasing confinement, the interaction time for the passing-over process is shorter and the droplet processes one higher curvature tip and more stretched profile. Furthermore, the lateral separation Δy/R1 exhibits larger decrease in the approaching stage and the thickness of the lubrication film is decreased during the interaction. As the initial lateral separation increases, the maximum trajectory shift by the collision interaction is getting smaller. During the collision between two droplets with different sizes, the amplitude of the deformation oscillation of the larger droplet is decreased by reducing the size ratio of the smaller droplet to the bigger one.
Keywords:  droplet collision      passing-over motion      hydrodynamics      shear flow  
Received:  14 May 2016      Revised:  02 July 2016      Accepted manuscript online: 
PACS:  82.70.Kj (Emulsions and suspensions)  
  83.50.-v (Deformation and flow ?)  
  47.61.Jd (Multiphase flows)  
  68.05.-n (Liquid-liquid interfaces)  
Fund: Project supported by the NSAF (Grants No. U1530260), the National Natural Science Foundation of China (Grant No. 51306158), the Natural Science Foundation of Jiangsu Province, China (Grant No. BK20130621), and the Special Program for Applied Research on Super Computation of the NSFC-Guangdong Joint Fund (the second phase).
Corresponding Authors:  Yong-Ping Chen     E-mail:

Cite this article: 

Cheng-Yao Wang(王程遥), Cheng-Bin Zhang(张程宾), Xiang-Yong Huang(黄庠永), Xiang-Dong Liu(刘向东), Yong-Ping Chen(陈永平) Hydrodynamics of passing-over motion during binary droplet collision in shear flow 2016 Chin. Phys. B 25 108202

[1] Wang J T, Wang J and Han J J 2011 Small 7 1728
[2] DeMello A J 2006 Nature 442 394
[3] Hu H B, Huang S H and Chen L B 2013 Chin. Phys. B 22 084702
[4] Zhao Y J, Shum H C, Chen H S, Adams L L A, Gu Z Z and Weitz D A 2011 J. Am. Chem. Soc. 133 8790
[5] Dittrich P S and Manz A 2006 Nat. Rev. Drug Discov. 5 210
[6] Zhao Y J, Gu H C, Xie Z Y, Shum H C, Wang B P and Gu Z Z 2013 J. Am. Chem. Soc. 135 54
[7] Lee M W, Kang D K, Yoon S S and Yarin A L 2012 Langmuir 28 3791
[8] Zhang L and She W L 2015 Chin. Phys. B 24 104207
[9] Wang H, Liao Q, Zhu X, Li J and Tian X 2010 J. Supercond. Nov. Magn. 23 1165
[10] Tian F B, Wang W Q, Wu J and Sui Y 2016 Comput. Fluids 124 1
[11] Liu Z, Chan S T, Faizi H A, Roberts R C and Shum H C 2015 Lab Chip 15 2018
[12] Chen X D, Song Y X, Li D Q and Hu G Q 2015 Phys. Rev. Appl. 4 024005
[13] Bartok W and Mason S G 1959 J. Colloid Sci. 14 13
[14] Allan R S and Mason S G 1962 J. Colloid Sci. 17 383
[15] Mackay G D and Mason S G 1964 Kolloid-Z. 195 138
[16] Loewenberg M and Hinch E J 1996 J. Fluid Mech. 321 395
[17] Loewenberg M and Hinch E J 1997 J. Fluid Mech. 338 299
[18] Lac E and Barthés-Biesel D 2008 Phys. Fluids 20 040801
[19] Olapade P O, Singh R K and Sarkar K 2009 Phys. Fluids 21 063302
[20] Singh R K and Sarkar K 2009 Phys. Fluids 21 103303
[21] Bayareh M and Mortazavi S 2011 Int. J. Multiph. Flow 37 1315
[22] Bayareh M and Mortazavi S 2011 Adv. Eng. Softw. 42 604
[23] Guido S and Simeone M 1998 J. Fluid Mech. 357 1
[24] Chen D J, Cardinaels R and Moldenaers P 2009 Langmuir 25 12885
[25] Bruyn P D, Chen D J, Moldenaers P and Cardinaels R 2014 J. Rheol. 58 1955
[26] Klaseboer E, Chevaillier J Ph, Gourdon C and Masbernat O 2000 J. Colloid Interface Sci. 229 274
[27] Shardt O, Mitra S K and Derksen J J 2014 Langmuir 30 14416
[28] Xu J J, Li Z L, Lowengrub J and Zhao H K 2011 Commun. Comput. Phys. 10 453
[29] Garstecki P, Fuerstman M J, Stone H A and Whitesides G M 2006 Lab Chip 6 437
[30] Xu J H, Li S W, Tan J, Wang Y J and Luo G S 2006 AIChE 52 3005
[31] Renardy Y Y and Cristini V 2001 Phys. Fluids 13 2161
[32] Taylor G I 1934 Proc. R. Soc. A 146 501
[33] Hirt C W and Nichols B D 1981 J. Comput. Phys. 39 201
[34] Chen X D and Yang V 2014 J. Comput. Phys. 269 22
[35] Sibillo V, Pasquariello G, Simeone M, Cristini V and Guido S 2006 Phys. Rev. Lett. 97 054502
[1] Linear analysis of plasma pressure-driven mode in reversed shear cylindrical tokamak plasmas
Ding-Zong Zhang(张定宗), Xu-Ming Feng(冯旭铭), Jun Ma(马骏), Wen-Feng Guo(郭文峰), Yan-Qing Huang(黄艳清), and Hong-Bo Liu(刘洪波). Chin. Phys. B, 2023, 32(1): 015201.
[2] Physical aspects of magnetized Jeffrey nanomaterial flow with irreversibility analysis
Fazal Haq, Muhammad Ijaz Khan, Sami Ullah Khan, Khadijah M Abualnaja, and M A El-Shorbagy. Chin. Phys. B, 2022, 31(8): 084703.
[3] Application of Galerkin spectral method for tearing mode instability
Wu Sun(孙武), Jiaqi Wang(王嘉琦), Lai Wei(魏来), Zhengxiong Wang(王正汹), Dongjian Liu(刘东剑), and Qiaolin He(贺巧琳). Chin. Phys. B, 2022, 31(11): 110203.
[4] Evolution of melt convection in a liquid metal driven by a pulsed electric current
Yanyi Xu(徐燕祎), Yunhu Zhang(张云虎), Tianqing Zheng(郑天晴), Yongyong Gong(龚永勇), Changjiang Song(宋长江), Hongxing Zheng(郑红星), and Qijie Zhai(翟启杰). Chin. Phys. B, 2021, 30(8): 084701.
[5] Effect of spatially nonlocal versus local optical response of a gold nanorod on modification of the spontaneous emission
Sha-Sha Wen(文莎莎), Meng Tian(田锰), Hong Yang(杨红), Su-Jun Xie(谢素君), Xiao-Yun Wang(王小云), Yun Li(李芸), Jie Liu(刘杰), Jin-Zhang Peng(彭金璋), Ke Deng(邓科), He-Ping Zhao(赵鹤平), and Yong-Gang Huang(黄勇刚). Chin. Phys. B, 2021, 30(2): 027801.
[6] A local refinement purely meshless scheme for time fractional nonlinear Schrödinger equation in irregular geometry region
Tao Jiang(蒋涛), Rong-Rong Jiang(蒋戎戎), Jin-Jing Huang(黄金晶), Jiu Ding(丁玖), and Jin-Lian Ren(任金莲). Chin. Phys. B, 2021, 30(2): 020202.
[7] Gravity-capillary waves modulated by linear shear flow in arbitrary water depth
Shaofeng Li(李少峰), Jinbao Song(宋金宝), and Anzhou Cao(曹安州). Chin. Phys. B, 2020, 29(12): 124702.
[8] Preliminary investigation on electrothermal instabilities in early phases of cylindrical foil implosions on primary test stand facility
Guanqiong Wang(王冠琼), Delong Xiao(肖德龙), Jiakun Dan(但家坤), Yang Zhang(张扬), Ning Ding(丁宁), Xianbin Huang(黄显宾), Xiaoguang Wang(王小光), Shunkai Sun(孙顺凯), Chuang Xue(薛创), Xiaojian Shu(束小建). Chin. Phys. B, 2019, 28(2): 025203.
[9] A nonlinear Schrödinger equation for gravity waves slowly modulated by linear shear flow
Shaofeng Li(李少峰), Juan Chen(陈娟), Anzhou Cao(曹安州), Jinbao Song(宋金宝). Chin. Phys. B, 2019, 28(12): 124701.
[10] Basic features of the multiscale interaction between tearing modes and slab ion-temperature-gradient modes
L Wei(魏来), Z X Wang(王正汹), J Q Li(李继全), Z Q Hu(胡朝清), Y Kishimoto(岸本泰明). Chin. Phys. B, 2019, 28(12): 125203.
[11] Characteristics and generation of elastic turbulence in a three-dimensional parallel plate channel using direct numerical simulation
Hong-Na Zhang(张红娜), Feng-Chen Li(李凤臣), Xiao-Bin Li(李小斌), Dong-Yang Li(李东阳), Wei-Hua Cai(蔡伟华), Bo Yu(宇波). Chin. Phys. B, 2016, 25(9): 094701.
[12] Improved kernel gradient free-smoothed particle hydrodynamics and its applications to heat transfer problems
Juan-Mian Lei(雷娟棉) and Xue-Ying Peng(彭雪莹). Chin. Phys. B, 2016, 25(2): 020202.
[13] Effects of q-profiles of a weak magnetic shear on energetic ion excited q=1 mode in tokamak plasmas
Ze-Yu Li(李泽宇), Xian-Qu Wang(王先驱), Xiao-Gang Wang(王晓钢). Chin. Phys. B, 2016, 25(1): 015203.
[14] Axisymmetric wave propagation in gas shear flow confined by a rigid-walled pipeline
Chen Yong (陈勇), Huang Yi-Yong (黄奕勇), Chen Xiao-Qian (陈小前), Bai Yu-Zhu (白玉铸), Tan Xiao-Dong (谭晓栋). Chin. Phys. B, 2015, 24(4): 044301.
[15] Critical condition for the transformation from Taylor cone to cone-jet
Wei Cheng (魏承), Gang Tie-Qiang (冮铁强), Chen Li-Jie (陈立杰), Zhao Yang (赵阳). Chin. Phys. B, 2014, 23(6): 064702.
No Suggested Reading articles found!