|
|
Investigation of bright and dark solitons in α, β-Fermi Pasta Ulam lattice |
Nkeh Oma Nfor1,†, Serge Bruno Yamgoué1, and Francois Marie Moukam Kakmeni2 |
1 Department of Physics, Higher Teacher Training College Bambili, The University of Bamenda, P. O. Box 39, Bambili-Cameroon; 2 Complex Systems and Theoretical Biology Group, Laboratory of Research on Advanced Materials and Nonlinear Science (LaRAMaNS), Department of Physics, Faculty of Science, University of Buea, P. O. Box 63 Buea-Cameroon |
|
|
Abstract We consider the Hamiltonian of α, β-Fermi Pasta Ulam lattice and explore the Hamilton-Jacobi formalism to obtain the discrete equation of motion. By using the continuum limit approximations and incorporating some normalized parameters, the extended Korteweg-de Vries equation is obtained, with solutions that elucidate on the Fermi Pasta Ulam paradox. We further derive the nonlinear Schrödinger amplitude equation from the extended Korteweg-de Vries equation, by exploring the reductive perturbative technique. The dispersion and nonlinear coefficients of this amplitude equation are functions of the α and β parameters, with the β parameter playing a crucial role in the modulational instability analysis of the system. For β greater than or equal to zero, no modulational instability is observed and only dark solitons are identified in the lattice. However for β less than zero, bright solitons are traced in the lattice for some large values of the wavenumber. Results of numerical simulations of both the Korteweg-de Vries and nonlinear Schrödinger amplitude equations with periodic boundary conditions clearly show that the bright solitons conserve their amplitude and shape after collisions.
|
Received: 18 July 2020
Revised: 11 September 2020
Accepted manuscript online: 28 September 2020
|
PACS:
|
05.45.Yv
|
(Solitons)
|
|
Corresponding Authors:
†Corresponding author. E-mail: omnkeh@gmail.com
|
Cite this article:
Nkeh Oma Nfor, Serge Bruno Yamgou, and Francois Marie Moukam Kakmeni Investigation of bright and dark solitons in α, β-Fermi Pasta Ulam lattice 2021 Chin. Phys. B 30 020502
|
1 Nfor N O, Ghomsi P G and Moukam Kakmeni F M 2018 Phys. Rev. E 97 022214 2 Achu G F, Mkam S E, Moukam Kakmeni F M and Tchawoua C 2018 Phys. Rev. E 98 022216 3 Nfor N O and Mokoli M T 2016 Journal of Modern Physics 7 1166 4 Agrawal G P2001 Nonlinear Fiber Optics, 3rd edn. (London: Academic Press) pp. 1-58 5 Kivshar Y S and Agrawal G P2003 Optical Solitons: From Fibers to Photonic Crystals (San Diego: Academic Press) pp. 1-142 6 Fandio Jubgang D J, Dikandé A M and Sunda-Meya A 2015 Phys. Rev. A 92 053850 7 Fermi E, Pasta J and Ulam S1955 Los Alamos report LA-1940 Published later in Collected Papers of Enrico Fermi, (E Segré, Ed.) (Chicago: University of Chicago Press) 8 Bocchieri P, Scotti A, Bearzi B and Loinger A 1970 Phys. Rev. A 2 2013 9 Cretegny T, Dauxois T, Ruffo S,Torcini A 1998 Physica D 121 109 10 Berchialla L, Galgani L and Giorgilli A 2004 Discr. Cont. Dyn. Syst. A 11 855 11 De Luca J, Lichtenberg A J and Lieberman M A 1995 Chaos 5 283 12 Zabusky N J, Sun Z and Peng G 2006 Chaos 16 013130 13 Izrailev F M, Khisamutdinov A I and Chirikov B V1970 LA-4440-TR(Los Alamos) 14 Ford J 1992 Phys. Rep. 213 271 15 Soto-Crespo J M, Akhmediev N N, Afanasjev V V and Wabnitz S 1997 Phys. Rev. E 55 4783 16 Rink B 2006 Comm. Math. Phys. 261 613 17 Chirikov B, Izrailev F and Tayurskij V 1973 Computer Physics Communications 5 11 18 Izrailev F M, Khisamutdinov A I and Chirikov B V1970 LA-4440-TR(Los Alamos) 19 Zabusky N J and Kruskal M D 1965 Phys. Rev. Lett. 15 240 20 Special issue 2005 Chaos 15 015104 21 Russel J S1844 Report of waves: Report of the 14th Meeting of the British Association for the Advancement of Science ( London: John Murray) 22 Kudryashov N A2010 Methods of nonlinear mathematical physics(in Russia) 23 Wazwaz A M 2007 Commun. Non. Sci. Numer. Simul. 12 1395 24 Chow K W, Grimshaw R H J and Ding E 2005 Wave Motion 43 158 25 de la Rosa R and Bruzòn M S 2018 Discrete Cont. Dyn. S 11 747 26 Mannan A and Mamun A A 2011 Phys. Rev. E. 84 026408 27 Rafat A, Rahman M M, Alam M S and Mamun A A 2015 Astrophys. Space Sci. 358 19 28 Zhang D J, Zhao S L, Sun Y Y and Zhou J 2014 Rev. Math. Phys. 26 1430006 29 Sun Y Y, Yuan J M and Zhang D J 2014 Commun. Theor. Phys. 61 415 30 Chowdury A, Ankiewicz A and Akhmediev N 2016 Eur. Phys. J. D 70 104 31 Liu L, Tian B, Yuan Y Q and Du Z 2018 Phys. Rev. E 97 052217 32 Lan Z Z and Su J J 2019 Nonlinear Dyn. 96 2535 33 Lan Z Z 2019 Appl. Math. Lett. 98 128 34 Slunyaev A V and Pelinovsky E N 2016 Phys. Rev. Lett. 117 214501 35 Lan Z Z, Hu W Q and Guo B L 2019 Applied Mathematical Modelling 73 695 36 Younis M, Ali S and Mahmood S A 2015 Nonlinear Dyn. 81 1191 37 Hassan M M 2004 Chaos, Soliton. Fract. 19 1201 38 M Remoissenet1999 Waves Called Solitons: Concepts and Experiments, 3rd edn. (Berlin: Springer) 39 Dauxois T and Peyrard M2006 Physics of Solitons (New York: Cambridge University Press) 40 Enns R H2011 It is a Nonlinear World(New York: Springer) 41 Grimshaw R, Pelinovsky D, Pelinovsky E and Talipova T 2001 Physica D 159 35 42 Benjamin T B and Feir J E 1967 J. Fluid Mech. 27 417 43 Serge B S, Guy R D, Eric T T and Francois B P 2018 Chin. Phys. B 27 126303 44 Guy R D, Serge B S and Francois B P 2019 Phys. Rev. E 100 022214 45 Serge B S, Guy R D, Eric T T and Francois B P 2018 Chin. Phys. B 27 096301 46 Grolet A, Hoffmann N, Thouverez F and Schwingshackl C 2016 Mech. Sys. Signal Processing 15 81 47 Alidou M, Etienne W, Daniel L and Kofané T C 2012 Phys. Rev. E 85 046605 48 Kivshar Y S and Luther-Davies B 1998 Phys. Rep. 298 81 49 Remoissenet M 1986 Phys. Rev. B 33 2386 50 Hasegawa A and Tappert F 1973 Appl. Phys. Lett. 23 171 51 Emplit P, Hamaide J P, Reynaud F, Froehly C and Barthelemy A 1987 Opt. Commun. 6 62 52 Shukla P K and Eliasson B 2006 Phy. Rev. Lett. 24 96 53 Chabchoub A, Kimmoun O, Branger H, Hoffmann N, Proment D, Onorato M and Akhmediev N 2013 Phys. Rev. Lett. 12 110 54 Tang B and Deng K 2017 Nonlinear Dyn. 88 2417 55 Kivshar Y S, Kròlikowski W and Chubykalo O A 1994 Phys. Rev. E 6 50 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|