Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(2): 020503    DOI: 10.1088/1674-1056/abc0d9
GENERAL Prev   Next  

Breather solutions of modified Benjamin-Bona-Mahony equation

G T Adamashvili
Technical University of Georgia, Kostava Street 77, Tbilisi, 0179, Georgia
Abstract  New two-component vector breather solution of the modified Benjamin-Bona-Mahony (MBBM) equation is considered. Using the generalized perturbation reduction method, the MBBM equation is reduced to the coupled nonlinear Schrödinger equations for auxiliary functions. Explicit analytical expressions for the profile and parameters of the vector breather oscillating with the sum and difference of the frequencies and wavenumbers are presented. The two-component vector breather and single-component scalar breather of the MBBM equation is compared.
Keywords:  modified Benjamin-Bona-Mahony equation      generalized perturbation reduction method      vector breather      nonlinear waves  
Received:  30 June 2020      Revised:  29 September 2020      Accepted manuscript online:  14 October 2020
PACS:  05.45.Yv (Solitons)  
  02.30.Jr (Partial differential equations)  
  52.35.Mw (Nonlinear phenomena: waves, wave propagation, and other interactions (including parametric effects, mode coupling, ponderomotive effects, etc.))  
Corresponding Authors:  Corresponding author. E-mail: guram_-adamashvili@ymail.com   

Cite this article: 

G T Adamashvili Breather solutions of modified Benjamin-Bona-Mahony equation 2021 Chin. Phys. B 30 020503

1 Newell A C1985 Solitons in Mathematics and Physics (Society for Industrial and Applied Mathematics) p. 320
2 Allen L1975 Optical resonance and two level atoms (Dover) p. 221
3 Sauter E G1996 Nonlinear Optics (New York: Wiley) p. 183
4 Crisp M D1970 Phys. Rev. A 2 2172
5 Rothenberg J E, Grischkowsky D and Balant A C 1984 Phys. Rev. Lett. 53 552
6 Adamashvili G T and Kaup D J 2006 Phys. Rev. E 73 066613
7 Arkhipov R M, Arkhipov M V, Babushkin I and Rosanov N N 2016 Opt. Lett. 41 737
8 Harvey J D, Dudley J M, Curley P F, Spielmann C and Krausz F 1994 Opt. Lett. 19 972
9 Adamashvili G T and Kaup D J2017 Phys. Phys. A 95 053801
10 Arkhipov M V, Shimko A A, Arkhipov R M, Babushkin I, Kalinichev A A, Demircan A, Morgner U and Rosanov N N 2018 Laser Phys. Lett. 15 075003
11 Adamashvili G T and Knorr A 2006 Opt. Lett. 31 74
12 Adamashvili G T and Kaup D J2019 Phys. Phys. A 99 013832
13 Diels J C and Hahn E L 1974 Phys. Rev. A 10 2501
14 Liu C, Yang Z Y, Zhao L C, Duan L, Yang G Y and Yang W L 2016 Phys. Rev. E 94 042221
15 Wang L, Zhang J H, Wang Z Q, Liu C, Li M, Qi F H and Guo R 2016 Phys. Rev. E 93 012214
16 Wang L, Zhang J H, Liu C, Li M and Qi F H 2016 Phys. Rev. E 93 062217
17 Ren Y, Liu C, Yang Z Y and Yang W L 2018 Phys. Rev. E 98 062223
18 Liu C and Akhmediev N 2019 Phys. Rev. E 100 062201
19 Wang L, Liu C, Wu X, Wang X and Sun W R 2018 Nonlinear Dynamics 94 977
20 Wang L, Wu X and Zhang H Y 2018 Phys. Lett. A 382 2650
21 Zhang J H, Wang L and Liu C 2017 Proc. R. Soc. A 473 20160681
22 Gelash A A and Zakharov V E 2013 Phys. Rev. Lett. 111 054101
23 Gelash A A and Zakharov V E2014 Nonlinearity 27 R1
24 Talukder M A and Menyuk C R 2010 Opt. Express 18 5639
25 Kivshar Y S and Agrawal G P2003 Optical solitons: From Fibers to Photonic Crystals (Academic Press) p. 527
26 Adamashvili G T 2011 Results in Physics 1 26
27 Adamashvili G T 2021 Optics and Spectroscopy 113 1
28 Adamashvili G T 2019 Optics and Spectroscopy 127 865
29 Adamashvili G T 2012 Phys. Rev. E 85 067601
30 Novikov S P, Manakov S V, Pitaevski L P and Zakharov V E1984 Theory of Solitons: The Inverse Scattering Method (Academy of Science of the USSR, Moscow, USSR) p. 273
32 Dodd R K, Eilbeck J C, Gibbon J D and Morris H C1982 Solitons and Nonlinear wave Equations ( Academic Press. Inc.) p. 687
33 Ablowitz M J and Segur H1981 Solitons and Inverse Scattering Transform(SIAM Philadelphia)
34 Ablowitz M J, Kaup D J, Newell A C and Segur H 1973 Phys. Rev. Lett. 30 1262
35 Leblond H 2008 J. Phys. B 41 043001
36 Taniuti T and Iajima N 1973 J. Math. Phys. 14 1389
37 Adamashvili G T 2014 Physica B 454 45
38 Adamashvili G T 2015 Phys. Lett. A 379 218
39 Benjamin T B, Bona J L and Mahony J J1972 Philos. Trans. R. Soc. London Ser. A 272 47
40 Guner O 2017 J. Ocean Eng. Sci. 2 248
41 Manafianheris J2012 World Applied Sciences Journal 19 1789
42 Riskin N M and Trubetskov D I2010 Nonlinear waves (Moscow: Nauka)
43 Khorshidi M, Nadjafikhah M, Jafari H and Al Qurashi M 2016 Open Math. 14 1138
44 Wazwaz O 2017 J. Ocean Eng. Sci. 2 1
45 Triki H, Leblond H and Mihalache D 2012 Opt. Commun. 285 3179
46 Ghanbari B, Baleanu D and Al Qurashi M 2019 Symmetry 11 20
47 Khater M M, Lu D and Zahran E H M 2017 Appl. Math. Inf. Sci. 11 1347
48 Demontis F 2011 Theor. Math. Phys. 168 886
49 Ma W X 2019 J. Math. Anal. Appl. 471 796
50 Vinogradova M B, Rudenko O V and Suhorukov A P1990 Theoria Voln (Nauka, Moscow) p. 430
51 Adamashvili G T 2012 Eur. Phys. J. D 66 101
52 Adamashvili G T 2020 Arxiv: 2001.07758v1 [nlin.PS]
[1] The interaction of nonlinear waves in two-dimensional dust crystals
Jiang Hong(姜虹), Yang Xiao-Xia(杨晓霞), Lin Mai-Mai(林麦麦), Shi Yu-Ren(石玉仁), and Duan Wen-Shan(段文山). Chin. Phys. B, 2011, 20(1): 019401.
[2] The interaction of nonlinear waves in two-dimensional lattice
Yang Xiao-Xia(杨晓霞), Duan Wen-Shan(段文山), Li Sheng-Chang(栗生长), and Han Jiu-Ning(韩久宁). Chin. Phys. B, 2008, 17(8): 2989-2993.
No Suggested Reading articles found!