|
|
Breather solutions of modified Benjamin-Bona-Mahony equation |
G T Adamashvili |
Technical University of Georgia, Kostava Street 77, Tbilisi, 0179, Georgia |
|
|
Abstract New two-component vector breather solution of the modified Benjamin-Bona-Mahony (MBBM) equation is considered. Using the generalized perturbation reduction method, the MBBM equation is reduced to the coupled nonlinear Schrödinger equations for auxiliary functions. Explicit analytical expressions for the profile and parameters of the vector breather oscillating with the sum and difference of the frequencies and wavenumbers are presented. The two-component vector breather and single-component scalar breather of the MBBM equation is compared.
|
Received: 30 June 2020
Revised: 29 September 2020
Accepted manuscript online: 14 October 2020
|
PACS:
|
05.45.Yv
|
(Solitons)
|
|
02.30.Jr
|
(Partial differential equations)
|
|
52.35.Mw
|
(Nonlinear phenomena: waves, wave propagation, and other interactions (including parametric effects, mode coupling, ponderomotive effects, etc.))
|
|
Corresponding Authors:
†Corresponding author. E-mail: guram_-adamashvili@ymail.com
|
Cite this article:
G T Adamashvili Breather solutions of modified Benjamin-Bona-Mahony equation 2021 Chin. Phys. B 30 020503
|
1 Newell A C1985 Solitons in Mathematics and Physics (Society for Industrial and Applied Mathematics) p. 320 2 Allen L1975 Optical resonance and two level atoms (Dover) p. 221 3 Sauter E G1996 Nonlinear Optics (New York: Wiley) p. 183 4 Crisp M D1970 Phys. Rev. A 2 2172 5 Rothenberg J E, Grischkowsky D and Balant A C 1984 Phys. Rev. Lett. 53 552 6 Adamashvili G T and Kaup D J 2006 Phys. Rev. E 73 066613 7 Arkhipov R M, Arkhipov M V, Babushkin I and Rosanov N N 2016 Opt. Lett. 41 737 8 Harvey J D, Dudley J M, Curley P F, Spielmann C and Krausz F 1994 Opt. Lett. 19 972 9 Adamashvili G T and Kaup D J2017 Phys. Phys. A 95 053801 10 Arkhipov M V, Shimko A A, Arkhipov R M, Babushkin I, Kalinichev A A, Demircan A, Morgner U and Rosanov N N 2018 Laser Phys. Lett. 15 075003 11 Adamashvili G T and Knorr A 2006 Opt. Lett. 31 74 12 Adamashvili G T and Kaup D J2019 Phys. Phys. A 99 013832 13 Diels J C and Hahn E L 1974 Phys. Rev. A 10 2501 14 Liu C, Yang Z Y, Zhao L C, Duan L, Yang G Y and Yang W L 2016 Phys. Rev. E 94 042221 15 Wang L, Zhang J H, Wang Z Q, Liu C, Li M, Qi F H and Guo R 2016 Phys. Rev. E 93 012214 16 Wang L, Zhang J H, Liu C, Li M and Qi F H 2016 Phys. Rev. E 93 062217 17 Ren Y, Liu C, Yang Z Y and Yang W L 2018 Phys. Rev. E 98 062223 18 Liu C and Akhmediev N 2019 Phys. Rev. E 100 062201 19 Wang L, Liu C, Wu X, Wang X and Sun W R 2018 Nonlinear Dynamics 94 977 20 Wang L, Wu X and Zhang H Y 2018 Phys. Lett. A 382 2650 21 Zhang J H, Wang L and Liu C 2017 Proc. R. Soc. A 473 20160681 22 Gelash A A and Zakharov V E 2013 Phys. Rev. Lett. 111 054101 23 Gelash A A and Zakharov V E2014 Nonlinearity 27 R1 24 Talukder M A and Menyuk C R 2010 Opt. Express 18 5639 25 Kivshar Y S and Agrawal G P2003 Optical solitons: From Fibers to Photonic Crystals (Academic Press) p. 527 26 Adamashvili G T 2011 Results in Physics 1 26 27 Adamashvili G T 2021 Optics and Spectroscopy 113 1 28 Adamashvili G T 2019 Optics and Spectroscopy 127 865 29 Adamashvili G T 2012 Phys. Rev. E 85 067601 30 Novikov S P, Manakov S V, Pitaevski L P and Zakharov V E1984 Theory of Solitons: The Inverse Scattering Method (Academy of Science of the USSR, Moscow, USSR) p. 273 32 Dodd R K, Eilbeck J C, Gibbon J D and Morris H C1982 Solitons and Nonlinear wave Equations ( Academic Press. Inc.) p. 687 33 Ablowitz M J and Segur H1981 Solitons and Inverse Scattering Transform(SIAM Philadelphia) 34 Ablowitz M J, Kaup D J, Newell A C and Segur H 1973 Phys. Rev. Lett. 30 1262 35 Leblond H 2008 J. Phys. B 41 043001 36 Taniuti T and Iajima N 1973 J. Math. Phys. 14 1389 37 Adamashvili G T 2014 Physica B 454 45 38 Adamashvili G T 2015 Phys. Lett. A 379 218 39 Benjamin T B, Bona J L and Mahony J J1972 Philos. Trans. R. Soc. London Ser. A 272 47 40 Guner O 2017 J. Ocean Eng. Sci. 2 248 41 Manafianheris J2012 World Applied Sciences Journal 19 1789 42 Riskin N M and Trubetskov D I2010 Nonlinear waves (Moscow: Nauka) 43 Khorshidi M, Nadjafikhah M, Jafari H and Al Qurashi M 2016 Open Math. 14 1138 44 Wazwaz O 2017 J. Ocean Eng. Sci. 2 1 45 Triki H, Leblond H and Mihalache D 2012 Opt. Commun. 285 3179 46 Ghanbari B, Baleanu D and Al Qurashi M 2019 Symmetry 11 20 47 Khater M M, Lu D and Zahran E H M 2017 Appl. Math. Inf. Sci. 11 1347 48 Demontis F 2011 Theor. Math. Phys. 168 886 49 Ma W X 2019 J. Math. Anal. Appl. 471 796 50 Vinogradova M B, Rudenko O V and Suhorukov A P1990 Theoria Voln (Nauka, Moscow) p. 430 51 Adamashvili G T 2012 Eur. Phys. J. D 66 101 52 Adamashvili G T 2020 Arxiv: 2001.07758v1 [nlin.PS] |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|