Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(4): 040302    DOI: 10.1088/1674-1056/abc2c2
GENERAL Prev   Next  

Pulse-gated mode of commercial superconducting nanowire single photon detectors

Fan Liu(刘帆)1,2, Mu-Sheng Jiang(江木生)1,2,†, Yi-Fei Lu(陆宜飞)1,2, Yang Wang(汪洋)1,2, and Wan-Su Bao(鲍皖苏)1,2
1 Henan Key Laboratory of Quantum Information and Cryptography, SSF IEU, Zhengzhou 450001, China;
2 Synergetic Innovation Centre of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China
Abstract  High detection efficiency and low intrinsic dark count rate are two advantages of superconducting nanowire single photon detectors (SNSPDs). However, the stray photons penetrated into the fiber would cause the extrinsic dark count rate, owing to the free running mode of SNSPDs. In order to improve the performance of SNSPDs in realistic scenarios, stray photons should be investigated and suppression methods should be adopted. In this study, we demonstrate the pulse-gated mode, with 500 kHz gating frequency, of a commercial SNSPD system for suppressing the response of stray photons about three orders of magnitude than its free-running counterpart on the extreme test conditions. When we push the gating frequency to 8 MHz, the dark count rate still keeps under 4% of free-running mode. In experiments, the intrinsic dark count rate is also suppressed to 4.56× 10-2 counts per second with system detection efficiency of 76.4372%. Furthermore, the time-correlated single-photon counting analysis also approves the validity of our mode in suppressing the responses of stray photons.
Keywords:  quantum detector      superconducting nanowire      pulse gated      dark count rate  
Received:  08 August 2020      Revised:  15 September 2020      Accepted manuscript online:  20 October 2020
PACS:  03.67.Dd (Quantum cryptography and communication security)  
  03.67.Hk (Quantum communication)  
  03.67.-a (Quantum information)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 61605248) and the National Basic Research Program of China (Grant No. 2013CB338002).
Corresponding Authors:  Corresponding author. E-mail: jmusheng@139.com   

Cite this article: 

Fan Liu(刘帆), Mu-Sheng Jiang(江木生), Yi-Fei Lu(陆宜飞), Yang Wang(汪洋), and Wan-Su Bao(鲍皖苏) Pulse-gated mode of commercial superconducting nanowire single photon detectors 2021 Chin. Phys. B 30 040302

1 Gol'tsman G N., Okunev O, Chulkova G, Lipatov A, Semenov A, Smirnov K, Voronov B, Dzardanov A, Williams C and Sobolewski R 2001 Appl. Phys. Lett. 79 705
2 Hadfield, Robert H 2009 Nat. Photon. 3 696
3 Natarajan C M, Tanner M G and Hadfield R H 2012 Superconduct. Sci. Technol. 25 063001
4 Eisaman M D, Fan J, Migdall A and Polyakov S V 2011 Rev. Sci. Instrum. 82 071101
5 Gemmell N R, McCarthy A, Liu B, Tanner M G, Dorenbos S D, Zwiller V, Patterson M S, Buller G S, Wilson B C and Hadfield R H 2013 Opt. Express 21 5005
6 Biswas A, Kovalik J, Srinivasan M, Shaw M, Piazzolla S, Wright M and Farr W 2016 Proc. SPIE 9739 97390Q
7 Takesue H, Nam S W, Zhang Q, Hadfield R H, Honjo T, Tamaki K and Yamamoto Y 2007 Nat. Photon. 1 343
8 Miki S, Yamashita T, Terai H and Wang Z 2013 Opt. Express 21 10208
9 Marsili F, Verma V B, Stern J A, Harrington S, Lita A E, Gerrits T, Vayshenker I, Baek B, Shaw M D, Mirin R P and Nam S W 2013 Nat. Photon. 7 210
10 Rosenberg D, Kerman A J, Molnar R J and Dauler E A 2013 Opt. Express 21 1440
11 Yang X, Li H, Zhang W, You L, Zhang L, Liu X, Wang Z, Peng W, Xie X and Jiang M 2014 Opt. Express 22 16267
12 Shibata H, Shimizu K, Takesue H and Tokura Y 2015 Opt. Lett. 40 3428
13 Shibata H, Shimizu K, Takesue H and Tokura Y 2013 Appl. Phys. Express 6 072801
14 Wang S, Chen W, Guo J F, Yin Z Q, Li H W, Zhou Z, Guo G C and Han Z F 2012 Opt. Lett. 37 1008
15 Yamashita T, Miki S, Makise K, Qiu W, Terai H, Fujiwara M, Sasaki M and Wang Z 2011 Appl. Phys. Lett. 99 161105
16 Bahgat Shehata A, Ruggeri A, Stellari F, Weger A, Song P, Sunter K, Najafi F, Berggren K and Anant V 2011 Rev. Sci. Instrum. 82 071101
17 Yamashita T, Miki S, Qiu W, Fujiwara M, Sasaki M and Wang Z 2010 Appl. Phys. Express 3 102502
18 Wu G, Zhou C, Chen X, Li X and Zeng H 2004 Proc. SPIE 5280 812
19 Akhlaghi M K and Majedi A H 2012 Opt. Express 20 1608
20 https://www.sconphoton.com/productinfo/1463565.html
21 Kerman A J, Dauler E A, Keicher W E, Yang J K W, Berggren K K, Gol'tsman G and Voronov B 2006 Appl. Phys. Lett. 88 111116
22 Engel A, Semenov A, Hübers H W, Ilin K and Siegel M 2004 Nucl. Instrum. Methods Phys. Res. Sect. A 520 32
23 Chen S, You L, Zhang W, Yang X, Li H, Zhang L, Wang Z and Xie X 2015 Opt. Express 23 10786
[1] Photon number resolvability of multi-pixel superconducting nanowire single photon detectors using a single flux quantum circuit
Hou-Rong Zhou(周后荣), Kun-Jie Cheng(程昆杰), Jie Ren(任洁), Li-Xing You(尤立星),Li-Liang Ying(应利良), Xiao-Yan Yang(杨晓燕), Hao Li(李浩), and Zhen Wang(王镇). Chin. Phys. B, 2022, 31(5): 057401.
[2] Flux-to-voltage characteristic simulation of superconducting nanowire interference device
Xing-Yu Zhang(张兴雨), Yong-Liang Wang(王永良), Chao-Lin Lv(吕超林), Li-Xing You(尤立星), Hao Li(李浩), Zhen Wang(王镇), Xiao-Ming Xie(谢晓明). Chin. Phys. B, 2020, 29(9): 098501.
[3] Wavelength dependence of intrinsic detection efficiency of NbN superconducting nanowire single-photon detector
Yong Wang(王勇), Hao Li(李浩), Li-Xing You(尤立星), Chao-Lin Lv(吕超林), He-Qing Wang(王河清), Xing-Yu Zhang(张兴雨), Wei-Jun Zhang(张伟君), Hui Zhou(周慧), Lu Zhang(张露), Xiao-Yan Yang(杨晓燕), Zhen Wang(王镇). Chin. Phys. B, 2019, 28(7): 078502.
[4] Dark count rate and band to band tunneling optimization for single photon avalanche diode topologies
Taha Haddadifam, Mohammad Azim Karami. Chin. Phys. B, 2019, 28(6): 068502.
[5] Tunable coplanar waveguide resonator with nanowires
Zhou Yu (周渝), Jia Tao (郏涛), Zhai Ji-Quan (翟计全), Wang Cheng (汪橙), Zhong Xian-Qian (钟先茜), Cao Zhi-Min (曹志敏), Sun Guo-Zhu (孙国柱), Kang Lin (康琳), Wu Pei-Heng (吴培亨). Chin. Phys. B, 2015, 24(4): 047403.
No Suggested Reading articles found!