ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS |
Prev
Next
|
|
|
Broadband and efficient second harmonic generation in LiNbO3-LiTaO3 composite ridge waveguides at telecom-band |
Xin-Tong Zhang(张欣桐)† |
Department of Optics and Optical Engineering, University of Science and Technology of China, Hefei 230026, China |
|
|
Abstract Broadband nonlinear frequency conversions of optical waves are widely employed in multiple areas of optics and photonics. However, the broadening of conversion bandwidth is often at a cost of reduction in efficiency, which may induce a limitation on practical applications. Here we theoretically propose a novel design of LiNbO3 ridge waveguides on LiTaO3 substrates which can be used for efficient and broadband second harmonic generation. Through group velocity engineering of the ridge waveguides, acceptance bandwidth over 20 nm with a high conversion efficiency of >25%W -1cm -2 is achieved at telecom-band.
|
Received: 18 May 2020
Revised: 22 June 2020
Accepted manuscript online: 25 August 2020
|
PACS:
|
42.65.-k
|
(Nonlinear optics)
|
|
42.65.Ky
|
(Frequency conversion; harmonic generation, including higher-order harmonic generation)
|
|
42.65.Wi
|
(Nonlinear waveguides)
|
|
42.25.-p
|
(Wave optics)
|
|
Corresponding Authors:
†Corresponding author. E-mail: zhxtong@mail.ustc.edu.cn
|
Cite this article:
Xin-Tong Zhang(张欣桐) Broadband and efficient second harmonic generation in LiNbO3-LiTaO3 composite ridge waveguides at telecom-band 2021 Chin. Phys. B 30 014205
|
1 Leindecker N, Marandi A, Byer R L and Vodopyanov K L 2011 Opt. Express 19 6296 2 Gong M, Chen Y, Lu F and Chen X 2010 Opt. Lett. 35 2672 3 Phillips C R, Langrock C, Pelc J S, Fejer M M, Hartl I and Fermann M E 2011 Opt. Express 19 18754 4 Zaske S, Lenhard A, Ke\ssler C A, Kettler J, Hepp C, Arend C, Albrecht R, Schulz W M, Jetter M, Michler P and Becher C 2012 Phys. Rev. Lett. 109 147404 5 Saglamyurek E, Jin J, Verma V B, Shaw M D, Marsili F, Nam S W, Oblak D and Tittel W 2015 Nat. Photon. 9 83 6 Mayer A S, Klenner A, Johnson A R, Luke K, Lamont M R E, Okawachi Y, Lipson M, Gaeta A L and Keller U 2015 Opt. Express 23 15440 7 Chang L, Li Y, Volet N, Wang L, Peters J and Bowers J E 2016 Optica 3 531 8 Wang C, Langrock C, Marandi A, Jankowski M, Zhang M, Desiatov B, Fejer M M and Lon\vcar M 2018 Optica 5 1438 9 Luo R, He Y, Liang H, Li M and Lin Q 2018 Optica 5 1006 10 Chen B Q, Zhang C, Hu C Y, Liu R J and Li Z Y 2015 Phys. Rev. Lett. 115 083902 11 Zhang L, Liu Y, Jinjer H, Pu S and Yang Z 2014 J. Opt. Soc. Am. B 31 1202 12 Cardoso L, Pires H and Figueira G 2009 Opt. Lett. 34 1369 13 Ge L, Chen Y, Jiang H, Li G, Zhu B, Liu Y and Chen X2018 Photon. Res. 6 954 14 Arbore M A, Marco O and Fejer M M 1997 Opt. Lett. 22 865 15 Breunig I, Haertle D and Buse K 2011 Appl. Phys. B 105 99 16 Oxenlowe L K, Agis F G, Ware C, Kurimura S, Mulvad H C H, Galili M, Kitamura K, Nakajima H, Ichikawa J, Erasme D, Clausen A T and Jeppesen P 2008 Electron. Lett. 44 370 17 Xianglong Z, Xianfeng C, Fei W, Yuping C, Yuxing X and Yingli C 2002 Opt. Commun. 204 407 18 Tehranchi A and Kashyap R 2008 J. Lightw. Technol. 26 343 19 Liu T, Djordjevic I, Song Z, Chen Y, Zhang R, Zhang K, Zhao W and Li B 2016 Opt. Express 24 10946 20 Lu G W, Shinada S, Furukawa H, Wada N, Miyazaki T and Ito H 2010 Opt. Express 18 6064 21 Dang W, Chen Y and Chen X 2012 IEEE Photon. Technol. Lett. 24 347 22 Jankowski M, Langrock C, Desiatov B, Marandi A, Wang C, Zhang M, Phillips C R, Lon\vcar M and Fejer M M 2020 Optica 7 40 23 Feigelson R S 1996 J. Cryst. Growth 166 1 24 Eda K, Sugimoto M and Tomita Y 1995 Appl. Phys. Lett. 66 827 25 Takigawa R, Higurashi E, Kawanishi T and Asano T 2014 Opt. Express 22 27733 26 Courjal N, Devaux F, Gerthoffer A, Guyot C, Henrot F, Ndao A and Bernal M P 2015 Opt. Express 23 13983 27 Wang L, Haunhorst C E, Volk M F, Chen F and Kip D 2015 Opt. Express 23 30188 28 Zelmon D E, Small D L and Jundt D 1997 J. Opt. Soc. Am. B 14 3319 29 Abedin K S and Ito H 1996 J. Appl. Phys. 80 6561 30 Fejer M M, Magel G, Jundt D and Byer R 1992 IEEE J. Quantum Electron 28 2631 31 Yu N E, Ro J H, Cha M, Kurimura S and Taira T 2002 Opt. Lett. 27 1046 32 Zhong H, Zhang L, Li Y and Fan D 2015 Sci. Rep. 5 10887 33 Agrawal G P2000 Nonlinear Science at the Dawn of the 21st Century(Berlin: Springer) pp. 195-211 34 Gayer O, Sacks Z, Galun E and Arie A 2008 Appl. Phys. B 91 343 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|