Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(1): 014205    DOI: 10.1088/1674-1056/abb232
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Broadband and efficient second harmonic generation in LiNbO3-LiTaO3 composite ridge waveguides at telecom-band

Xin-Tong Zhang(张欣桐)†
Department of Optics and Optical Engineering, University of Science and Technology of China, Hefei 230026, China
Abstract  Broadband nonlinear frequency conversions of optical waves are widely employed in multiple areas of optics and photonics. However, the broadening of conversion bandwidth is often at a cost of reduction in efficiency, which may induce a limitation on practical applications. Here we theoretically propose a novel design of LiNbO3 ridge waveguides on LiTaO3 substrates which can be used for efficient and broadband second harmonic generation. Through group velocity engineering of the ridge waveguides, acceptance bandwidth over 20 nm with a high conversion efficiency of >25%W -1cm -2 is achieved at telecom-band.
Keywords:  second harmonic generation      lithium niobate ridge waveguide      dispersion manipulation  
Received:  18 May 2020      Revised:  22 June 2020      Accepted manuscript online:  25 August 2020
PACS:  42.65.-k (Nonlinear optics)  
  42.65.Ky (Frequency conversion; harmonic generation, including higher-order harmonic generation)  
  42.65.Wi (Nonlinear waveguides)  
  42.25.-p (Wave optics)  
Corresponding Authors:  Corresponding author. E-mail: zhxtong@mail.ustc.edu.cn   

Cite this article: 

Xin-Tong Zhang(张欣桐) Broadband and efficient second harmonic generation in LiNbO3-LiTaO3 composite ridge waveguides at telecom-band 2021 Chin. Phys. B 30 014205

1 Leindecker N, Marandi A, Byer R L and Vodopyanov K L 2011 Opt. Express 19 6296
2 Gong M, Chen Y, Lu F and Chen X 2010 Opt. Lett. 35 2672
3 Phillips C R, Langrock C, Pelc J S, Fejer M M, Hartl I and Fermann M E 2011 Opt. Express 19 18754
4 Zaske S, Lenhard A, Ke\ssler C A, Kettler J, Hepp C, Arend C, Albrecht R, Schulz W M, Jetter M, Michler P and Becher C 2012 Phys. Rev. Lett. 109 147404
5 Saglamyurek E, Jin J, Verma V B, Shaw M D, Marsili F, Nam S W, Oblak D and Tittel W 2015 Nat. Photon. 9 83
6 Mayer A S, Klenner A, Johnson A R, Luke K, Lamont M R E, Okawachi Y, Lipson M, Gaeta A L and Keller U 2015 Opt. Express 23 15440
7 Chang L, Li Y, Volet N, Wang L, Peters J and Bowers J E 2016 Optica 3 531
8 Wang C, Langrock C, Marandi A, Jankowski M, Zhang M, Desiatov B, Fejer M M and Lon\vcar M 2018 Optica 5 1438
9 Luo R, He Y, Liang H, Li M and Lin Q 2018 Optica 5 1006
10 Chen B Q, Zhang C, Hu C Y, Liu R J and Li Z Y 2015 Phys. Rev. Lett. 115 083902
11 Zhang L, Liu Y, Jinjer H, Pu S and Yang Z 2014 J. Opt. Soc. Am. B 31 1202
12 Cardoso L, Pires H and Figueira G 2009 Opt. Lett. 34 1369
13 Ge L, Chen Y, Jiang H, Li G, Zhu B, Liu Y and Chen X2018 Photon. Res. 6 954
14 Arbore M A, Marco O and Fejer M M 1997 Opt. Lett. 22 865
15 Breunig I, Haertle D and Buse K 2011 Appl. Phys. B 105 99
16 Oxenlowe L K, Agis F G, Ware C, Kurimura S, Mulvad H C H, Galili M, Kitamura K, Nakajima H, Ichikawa J, Erasme D, Clausen A T and Jeppesen P 2008 Electron. Lett. 44 370
17 Xianglong Z, Xianfeng C, Fei W, Yuping C, Yuxing X and Yingli C 2002 Opt. Commun. 204 407
18 Tehranchi A and Kashyap R 2008 J. Lightw. Technol. 26 343
19 Liu T, Djordjevic I, Song Z, Chen Y, Zhang R, Zhang K, Zhao W and Li B 2016 Opt. Express 24 10946
20 Lu G W, Shinada S, Furukawa H, Wada N, Miyazaki T and Ito H 2010 Opt. Express 18 6064
21 Dang W, Chen Y and Chen X 2012 IEEE Photon. Technol. Lett. 24 347
22 Jankowski M, Langrock C, Desiatov B, Marandi A, Wang C, Zhang M, Phillips C R, Lon\vcar M and Fejer M M 2020 Optica 7 40
23 Feigelson R S 1996 J. Cryst. Growth 166 1
24 Eda K, Sugimoto M and Tomita Y 1995 Appl. Phys. Lett. 66 827
25 Takigawa R, Higurashi E, Kawanishi T and Asano T 2014 Opt. Express 22 27733
26 Courjal N, Devaux F, Gerthoffer A, Guyot C, Henrot F, Ndao A and Bernal M P 2015 Opt. Express 23 13983
27 Wang L, Haunhorst C E, Volk M F, Chen F and Kip D 2015 Opt. Express 23 30188
28 Zelmon D E, Small D L and Jundt D 1997 J. Opt. Soc. Am. B 14 3319
29 Abedin K S and Ito H 1996 J. Appl. Phys. 80 6561
30 Fejer M M, Magel G, Jundt D and Byer R 1992 IEEE J. Quantum Electron 28 2631
31 Yu N E, Ro J H, Cha M, Kurimura S and Taira T 2002 Opt. Lett. 27 1046
32 Zhong H, Zhang L, Li Y and Fan D 2015 Sci. Rep. 5 10887
33 Agrawal G P2000 Nonlinear Science at the Dawn of the 21st Century(Berlin: Springer) pp. 195-211
34 Gayer O, Sacks Z, Galun E and Arie A 2008 Appl. Phys. B 91 343
[1] Second harmonic generation from precise diamond blade diced ridge waveguides
Hui Xu(徐慧), Ziqi Li(李子琦), Chi Pang(逄驰), Rang Li(李让), Genglin Li(李庚霖), Sh. Akhmadaliev, Shengqiang Zhou(周生强), Qingming Lu(路庆明), Yuechen Jia(贾曰辰), and Feng Chen(陈峰). Chin. Phys. B, 2022, 31(9): 094209.
[2] Photon-interactions with perovskite oxides
Hongbao Yao(姚洪宝), Er-Jia Guo(郭尔佳), Chen Ge(葛琛), Can Wang(王灿), Guozhen Yang(杨国桢), and Kuijuan Jin(金奎娟). Chin. Phys. B, 2022, 31(8): 088106.
[3] Phase-matched second-harmonic generation in hybrid polymer-LN waveguides
Zijie Wang(王梓杰), Bodong Liu(刘伯东), Chunhua Wang(王春华), and Huakang Yu(虞华康). Chin. Phys. B, 2022, 31(10): 104208.
[4] Modulation of the second-harmonic generation in MoS2 by graphene covering
Chunchun Wu(吴春春), Nianze Shang(尚念泽), Zixun Zhao(赵子荀), Zhihong Zhang(张智宏), Jing Liang(梁晶), Chang Liu(刘畅), Yonggang Zuo(左勇刚), Mingchao Ding(丁铭超), Jinhuan Wang(王金焕), Hao Hong(洪浩), Jie Xiong(熊杰), and Kaihui Liu(刘开辉). Chin. Phys. B, 2021, 30(2): 027803.
[5] Generation of 15 W femtosecond laser pulse from a Kerr-lens mode-locked Yb: YAG thin-disk oscillator
Yingnan Peng(彭英楠), Jinwei Zhang(张金伟), Zhaohua Wang(王兆华), Jiangfeng Zhu(朱江峰), Dehua Li(李德华), Zhiyi Wei(魏志义). Chin. Phys. B, 2016, 25(9): 094207.
[6] Second harmonic generation of metal nanoparticles under tightly focused illumination
Jing-Wei Sun(孙经纬), Xiang-Hui Wang(王湘晖), Sheng-Jiang Chang(常胜江),Ming Zeng(曾明), Na Zhang(张娜). Chin. Phys. B, 2016, 25(3): 037803.
[7] Generation of femtosecond laser pulses at 396 nm in K3B6O10Cl crystal
Ning-Hua Zhang(张宁华), Hao Teng(滕浩), Hang-Dong Huang(黄杭东), Wen-Long Tian(田文龙), Jiang-Feng Zhu(朱江峰), Hong-Ping Wu(吴红萍), Shi-Lie Pan(潘世烈), Shao-Bo Fang(方少波), Zhi-Yi Wei(魏志义). Chin. Phys. B, 2016, 25(12): 124204.
[8] Tunable femtosecond near-infrared source based on a Yb:LYSO-laser-pumped optical parametric oscillator
Wen-Long Tian(田文龙), Zhao-Hua Wang(王兆华), Jiang-Feng Zhu(朱江峰), Zhi-Yi Wei(魏志义). Chin. Phys. B, 2016, 25(1): 014207.
[9] Second harmonic generation in inhomogeneous MgO:LiNbO3 waveguides
Li Guo-Hui(李国辉), Jiang Hai-Ling(蒋海灵), and Xu Xin-Ye(徐信业). Chin. Phys. B, 2011, 20(6): 064201.
[10] Properties of periodic multicrystal configurations in walk-off-compensating second harmonic generation of ultrashort pulses
Huang Jin-Zhe(黄金哲), Zhang Liu-Yang(张留洋), and Shen Tao(沈涛) . Chin. Phys. B, 2011, 20(4): 044206.
[11] Temperature-dependent second harmonic generation process based on an MgO-doped periodically poled lithium niobate waveguide
Shen Shi-Kui(沈世奎), Yang Ai-Ying(杨爱英), Zuo Lin(左林), Cui Jian-Min(崔建民), and Sun Yu-Nan(孙雨南) . Chin. Phys. B, 2011, 20(10): 104206.
[12] Study of narrow-band second harmonic generation from a broad-band fundamental pulse
Wen Jing(温静), Jiang Hong-Bing(蒋红兵), Deng Yong-Kai(邓勇开), and Gong Qi-Huang(龚旗煌). Chin. Phys. B, 2010, 19(12): 124213.
[13] Optical properties and frequency conversion with AgGaGeS$_4$ crystal
Ren De-Ming (任德明), Huang Jin-Zhe (黄金哲), Qu Yan-Chen (曲彦臣), Hu Xiao-Yong (胡孝勇), Andreev Yuri, Geiko Pavel, Badikov Valerii, Shaiduko Anna. Chin. Phys. B, 2004, 13(9): 1468-1473.
[14] Second harmonic generation of propagating collective excitations in Bose-Einstein condensates
Huang Guo-Xiang (黄国翔). Chin. Phys. B, 2004, 13(11): 1866-1876.
[15] Effects of transverse profile of pump field on second harmonic generation in periodic nonlinear materials
Zhang Han-Zhuang (张汉壮), Yang Jian-Bing (杨建冰), Gao Jin-Yue (高锦岳). Chin. Phys. B, 2003, 12(5): 518-523.
No Suggested Reading articles found!