CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES |
Prev
Next
|
|
|
Thermal stress reduction of GaAs epitaxial growth on V-groove patterned Si substrates |
Ze-Yuan Yang(杨泽园)1, Jun Wang(王俊)1,†, Guo-Feng Wu(武国峰)1, Yong-Qing Huang(黄永清)1, Xiao-Min Ren(任晓敏)1, Hai-Ming Ji(季海铭)2, and Shuai Luo(罗帅)2 |
1 State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing 100876, China; 2 Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China |
|
|
Abstract We investigate the thermal stresses for GaAs layers grown on V-groove patterned Si substrates by the finite-element method. The results show that the thermal stress distribution near the interface in a patterned substrate is nonuniform, which is far different from that in a planar substrate. Comparing with the planar substrate, the thermal stress is significantly reduced for the GaAs layer on the patterned substrate. The effects of the width of the V-groove, the thickness, and the width of the SiO2 mask on the thermal stress are studied. It is found that the SiO2 mask and V-groove play a crucial role in the stress of the GaAs layer on Si substrate. The results indicate that when the width of V-groove is 50 nm, the width and the thickness of the SiO2 mask are both 100 nm, the GaAs layer is subjected to the minimum stress. Furthermore, Comparing with the planar substrate, the average stress of the GaAs epitaxial layer in the growth window region of the patterned substrate is reduced by 90%. These findings are useful in the optimal designing of growing high-quality GaAs films on patterned Si substrates.
|
Received: 10 June 2020
Revised: 07 August 2020
Accepted manuscript online: 01 September 2020
|
PACS:
|
61.50.Ah
|
(Theory of crystal structure, crystal symmetry; calculations and modeling)
|
|
81.05.Ea
|
(III-V semiconductors)
|
|
02.70.Dh
|
(Finite-element and Galerkin methods)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61874148, 61974141, and 61674020), the Beijing Natural Science Foundation, China (Grant No. 4192043), the State Key Laboratory of Information Photonics and Optical Communications (Beijing University of Posts and Telecommunications), China (Grant No. IPOC2018ZT01), and the 111 Project of China (Grant No. B07005). |
Corresponding Authors:
†Corresponding author. E-mail: wangjun12@bupt.edu.cn
|
Cite this article:
Ze-Yuan Yang(杨泽园), Jun Wang(王俊), Guo-Feng Wu(武国峰), Yong-Qing Huang(黄永清), Xiao-Min Ren(任晓敏), Hai-Ming Ji(季海铭), and Shuai Luo(罗帅) Thermal stress reduction of GaAs epitaxial growth on V-groove patterned Si substrates 2021 Chin. Phys. B 30 016102
|
1 Bolkhovityanov Y B and Pchelyakov O P 2008 Phys. Usp. 51 437 2 Li Q, Wan Y, Liu A Y, Gossard A C, Bowers J E, Hu E L and Lau K M 2016 Opt. Express 24 21038 3 Chen S M, Liao M Y, Tang M C, Wu J, Martin M, Baron T, Seeds A and Liu H Y 2017 Opt. Express 25 4632 4 Vaisman M, Jain N, Li Q, Lau K M, Makoutz E, Saenz T, McMahon W E, Tamboli A C and Warren E L 2018 IEEE J. Photovolt. 8 1635 5 Wan Y, Zhang Z, Chao R, Norman J, Joung D, Shang C, Li Q, Kennedy M J, Liang D, Zhang C, Shi J W, Gossard A C, Lau K M and Bowers J E 2017 Opt. Express 25 27715 6 Akiyama M, Kawarada Y and Kaminishi K 1984 Jpn. J. Appl. Phys. 23 L843 7 He Y R, Wang J, Hu H Y, Wang Q, Huang Y Q and Ren X M 2015 Appl. Phys. Lett. 106 202105 8 Xu H Y, Guo Y N, Wang Y, Zou J, Kang J H, Gao Q, Tan H H and Jagadish C 2009 J. Appl. Phys. 106 083514 9 Wang J, Hu H Y, Deng C, He Y R, Wang Q, Duan X F, Huang Y Q and Ren X M 2015 Chin. Phys. B 24 028101 10 Wang T, Liu H Y, Lee A, Pozzi F and Seeds A 2011 Opt. Express 19 11381 11 Vanamu G, Datye A K, Dawson R and Zaidi S H 2006 Appl. Phys. Lett. 88 251909 12 Hu H Y, Wang J, Cheng Z, Yang Z Y, Yin H Y, Fan Y B, Ma X, Huang Y Q and Ren X M 2018 Appl. Phys. A 124 296 13 Chen S M, Li W, Wu J, Jiang Q, Tang M C, Shutts S, Elliott S N, Sobiesierski A, Seeds A J, Ross I, Smowton P M and Liu H Y 2016 Nat. Photon. 10 307 14 Li S Y, Zhou X L, Kong X L, Li M K, Mi J P, Bian J, Wang W and Pan J Q 2015 J. Cryst. Growth 426 147 15 Guo W, Date L, Pena V, Bao X, Merckling C, Waldron N, Collaert N, Caymax M, Sanchez E, Vancoille E, Barla K, Thean A, Eyben P and Vandervorst W 2014 Appl. Phys. Lett. 105 062101 16 Orzali T, Vert A, O'Brien B, Herman J L, Vivekanand S, Hill R J W, Karim Z and Rao S S P 2015 J. Appl. Phys. 118 105307 17 Li Q and Lau K M 2017 Prog. Cryst. Growth Charact. Mater. 63 105 18 Paladugu M, Merckling C, Loo R, Richard O, Bender H, Dekoster J, Vandervorst W, Caymax M and Heyns M 2012 Cryst. Growth Des. 12 4696 19 Li Q, Ng K W and Lau K M 2015 Appl. Phys. Lett. 106 072105 20 Yang V K, Groenert M, Leitz C W, Pitera A J, Currie M T and Fitzgerald E A 2003 J. Appl. Phys. 93 3859 21 Kim K S, Yang G M, Shim H W, Lim K Y, Suh E K and Lee H J 1997 J. Appl. Phys. 82 5103 22 Scaccabarozzi A, Bietti S, Fedorov A, von Kanel H, Miglio L and Sanguinetti S 2014 J. Cryst. Growth 401 559 23 Li S Y, Zhou X L, Kong X T, Li M K, Mi J P, Bian J, Wang W and Pan J Q 2015 Chin. Phys. Lett. 32 028101 24 Stoney G G 1909 Proceedings of the Royal Society of London: Series A, Containing papers of a mathematical and physical character 82 172 25 Ghosh S, Leonhardt D and Han S M 2011 Appl. Phys. Lett. 99 181911 26 Tang Y, Rich D H, Lingunis E H and Haegel N M 1994 J. Appl. Phys. 76 3032 27 Freundlich A, Kamada H, Neu G and Gil B 1989 Phys. Rev. B 40 1652 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|