Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(10): 104220    DOI: 10.1088/1674-1056/23/10/104220
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Passive polarization rotator based on silica photonic crystal fiber for 1.31-μm and 1.55-μm bands via adjusting the fiber length

Chen Lei (陈雷), Zhang Wei-Gang (张伟刚), Wang Li (王丽), Bai Zhi-Yong (白志勇), Zhang Shan-Shan (张珊珊), Wang Biao (王标), Yan Tie-Yi (严铁毅), Jonathan Sieg
Key Laboratory of Optical Information Science and Technology, Ministry of Education, Institute of Modern Optics, Nankai University, Tianjin 300071, China
Abstract  A new polarization rotator based on the silica photonic crystal fiber is proposed. The proposed polarization rotator photonic crystal fiber (PR-PCF) possesses a triangle jigsaw-shape core region. The full-vector finite-element method is used to analyze the phenomenon of polarization conversion between the quasi-TE and quasi-TM modes. Numerical simulations show that the wavelengths of 1.31 μm and 1.55 μm are converted with a nearly 100% polarization conversion ratio with their matched coupling length and has a relatively strong realistic fabrication tolerance-100 nm on the y axis and 50 nm on the x axis. The full vectorial finite difference beam propagation method is used to confirm the performance of the proposed PR-PCF.
Keywords:  polarization rotation      photonic crystal fibers      beam propagation method      full-vector finite-element method  
Received:  24 December 2013      Revised:  07 March 2014      Accepted manuscript online: 
PACS:  42.81.Gs (Birefringence, polarization)  
  42.79.-e (Optical elements, devices, and systems)  
  42.82.Bq (Design and performance testing of integrated-optical systems)  
  42.81.-i (Fiber optics)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11274181, 10974100, 61203204, and 10674075), the Doctoral Scientific Fund Project of the Ministry of Education of China (Grant No. 20120031110033), and the Tianjin Key Program of Application Foundations and Future Technology Research Project, China (Grant No. 10JCZDJC24300).
Corresponding Authors:  Zhang Wei-Gang     E-mail:  zhangwg@nankai.edu.cn
About author:  42.81.Gs; 42.79.-e; 42.82.Bq; 42.81.-i

Cite this article: 

Chen Lei (陈雷), Zhang Wei-Gang (张伟刚), Wang Li (王丽), Bai Zhi-Yong (白志勇), Zhang Shan-Shan (张珊珊), Wang Biao (王标), Yan Tie-Yi (严铁毅), Jonathan Sieg Passive polarization rotator based on silica photonic crystal fiber for 1.31-μm and 1.55-μm bands via adjusting the fiber length 2014 Chin. Phys. B 23 104220

[1]Heismann F and Smith R W 1994 IEEE J. Sel. Top. Quantum Electron. 2 311
[2]Morita I, Tanaka K, Edagawa N and Suzuki M 1999 IEEE J. Lightwave Technol. 17 2506
[3]Geng P C, Zhang W G, Gao S C, Zhang S S, Zhang H and Ruan J 2012 IEEE Photon. Technol. Lett. 24 1304
[4]Zhang S S, Zhang W G, Geng P C, Li X L and Ruan J 2011 Appl. Opt. 50 6576
[5]Geng P C, Zhang W G, Zhang H, Zhang S S, Ruan J, Wei S L and Xue X L 2012 IEEE Photon. Technol. Lett. 24 452
[6]Sacher W D, Barwicz T, Taylor B J F and Poon J K S 2014 Opt. Express 22 3777
[7]Wang J, Niu B, Sheng Z, Wu A M, Wang X, Zou S C, Qi M H and Gan F W 2014 Opt. Express 22 4137
[8]Caspers J N, Alam M Z and Mojahedi M 2012 Opt. Lett. 37 4615
[9]Ren G, Zheng W H, Wang K, Du X Y, Xing M X and Chen L H 2008 Chin. Phys. B 17 1674
[10]Shani Y, Alferness R, Koch T, Koren U, Oron M, Miller B I and Young M G 1991 Appl. Phys. Lett. 59 1278
[11]Koster T and Lambeck P 2001 IEEE J. Lightwave Technol. 19 876
[12]Somasiri N, Rahman B M A and Obayya S S A 2002 IEEE J. Lightwave Technol. 20 751
[13]Hameed M F O and Obayya S S A 2011 IEEE J. Lightwave Technol. 29 2725
[14]Hameed M F O and Obayya S S A 2011 Opt. Lett. 36 3133
[15]Hameed M F O, Obayya S S A and El-Mikati H A 2012 IEEE J. Lightwave Technol. 30 283
[16]Liang H, Zhang W G, Geng P C, Liu Y G, Wang Z, Guo J Q, Gao S C and Yan S Y 2013 Opt. Lett. 38 1071
[17]Liu X Y, Zhang F D, Zhang M and Ye P D 2005 Chin. Phys. 16 1710
[18]Weinert C M and Heidrich H 1993 IEEE Photon. Technol. Lett. 5 324
[19]Hameed M F O and Obayya S S A 2010 IEEE J. Lightwave Technol. 28 806
[20]Huang W P and Xu C L 1993 IEEE J. Quantum Electron. 29 2639
[1] A band-pass frequency selective surface with polarization rotation
Bao-Qin Lin(林宝勤), Wen-Zhun Huang(黄文准), Jian-Xin Guo(郭建新), Zhe Liu(刘哲), Yan-Wen Wang(王衍文), and Hong-Jun Ye(叶红军). Chin. Phys. B, 2023, 32(2): 024204.
[2] Generation of diffraction-free vectorial elliptic hollow beams with space-varying inhomogeneous polarizations
Hui-Rong Li(李会容), Peng-Yi Zhao(赵朋义), and Jian-Ping Yin(印建平). Chin. Phys. B, 2021, 30(8): 084204.
[3] Generation of cavity-birefringence-dependent multi-wavelength bright-dark pulse pair in a figure-eight thulium-doped fiber laser
Xiao-Fa Wang(王小发), Dong-Xin Liu(刘东鑫), Hui-Hui Han(韩慧慧), and Hong-Yang Mao(毛红炀). Chin. Phys. B, 2021, 30(5): 054205.
[4] Photonic crystal fiber polarization filter with two large apertures coated with gold layers
Jun-Jun Wu(吴君君), Shu-Guang Li(李曙光), Qiang Liu(刘强), Min Shi(石敏). Chin. Phys. B, 2017, 26(11): 114209.
[5] Gamma-radiation effects in pure-silica-core photonic crystal fiber
Wei Cai(蔡伟), Ningfang Song(宋凝芳), Jing Jin(金靖), Jingming Song(宋镜明), Wei Li(李伟), Wenyong Luo(罗文勇), Xiaobin Xu(徐小斌). Chin. Phys. B, 2017, 26(11): 114211.
[6] Surface plasmon resonance-induced tunable polarization filters based on nanoscale gold film-coated photonic crystal fibers
Yingchao Liu(刘英超), Hailiang Chen(陈海良), Shuguang Li(李曙光), Qiang Liu(刘强), Jianshe Li(李建设). Chin. Phys. B, 2017, 26(10): 104211.
[7] An all-optical buffer based on polarization rotation in an EAM
Wang Kui-Ru (王葵如), Kuang Hai (匡海), Wang Yong-Jun (王拥军), Yuan Jin-Hui (苑金辉), Yan Bin-Bin (颜玢玢). Chin. Phys. B, 2013, 22(8): 084201.
[8] Supercontinuum generated in all-normal dispersion photonic crystal fibers with picosecond pump pulses
Li Pan (李磐), Shi Lei (时雷), Mao Qing-He (毛庆和). Chin. Phys. B, 2013, 22(7): 074204.
[9] Theoretical and experimental study on all-normal-dispersion Yb-doped mode-locked fiber lasers
Chi Jun-Jie (池俊杰), Li Ping-Xue (李平雪), Yang Chun (杨春), Zhao Zi-Qiang (赵自强), Li Yao (李尧), Wang Xiong-Fei (王雄飞), Zhong Guo-Shun (钟国舜), Zhao Hong (赵鸿), Jiang Dong-Sheng (姜东升). Chin. Phys. B, 2013, 22(4): 044204.
[10] Transition state to mode locking in a passively mode-locked erbium-doped fibre ring laser
Liu Jia-Rui(刘佳锐), Xu Wen-Cheng(徐文成), Luo Zhi-Chao(罗智超), Luo Ai-Ping(罗爱平), and Yin Hai-Sen(殷海森). Chin. Phys. B, 2011, 20(5): 054203.
[11] Elliptical Gaussian solitons in synthetic nonlocal nonliear media
Cheng Shuang (程爽), Wang Qi (王奇), Ge Li-Juan (葛丽娟), Shi Jie-Long (施解龙), Ding Hai-Xia (丁海霞), Shen Ming (申明). Chin. Phys. B, 2011, 20(5): 054206.
[12] Theoretical investigation of band-gap and mode characteristics of anti-resonance guiding photonic crystal fibres
Yuan Jin-Hui(苑金辉), Sang Xin-Zhu(桑新柱), Yu Chong-Xiu(余重秀), Xin Xiang-Jun(忻向军), Zhang Jin-Long(张锦龙), Zhou Gui-Yao(周桂耀), Li Shu-Guang(李曙光), and Hou Lan-Tian(侯蓝田). Chin. Phys. B, 2011, 20(2): 024213.
[13] High-performance evanescently-coupled uni-traveling-carrier photodiodes
Zhang Yun-Xiao(张云霄), Liao Zai-Yi(廖栽宜), and Wang Wei(王圩). Chin. Phys. B, 2009, 18(6): 2393-2397.
[14] Effect of interstitial air holes on Bragg gratings in photonic crystal fibre with a Ge-doped core
Zhang Hui-Jia(张慧嘉), Li Shu-Guang(李曙光), and Hou Lan-Tian(侯蓝田). Chin. Phys. B, 2009, 18(2): 630-635.
[15] Design of novel three port optical gates scheme for the integration of large optical cavity electroabsorption modulators and evanescently-coupled photodiodes
Liao Zai-Yi(廖栽宜), Yang Hua(杨华), and Wang Wei(王圩) . Chin. Phys. B, 2008, 17(7): 2557-2561.
No Suggested Reading articles found!