Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(12): 127201    DOI: 10.1088/1674-1056/abc0e4
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Different noncollinear magnetizations on two edges of zigzag graphene nanoribbons

Yang Xiao(肖杨)1,†, Qiaoli Ye(叶巧利)1,†, Jintao Liang(梁锦涛)1, Xiaohong Yan(颜晓红)2, and Ying Zhang(张影)1,
1 College of Science, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China; 2 School of Material Science and Engineering, Jiangsu University, Zhenjiang 212013, China
Abstract  Based on density functional theory and non-equilibrium Green's function method, we studied noncollinear magnetism and spin transport in a 180° domain wall made of zigzag graphene nanoribbon (ZGNR) with different noncollinear magnetic profiles on the top and bottom edges. Our results show that a helical domain wall on the top (bottom) edge and an abrupt domain wall on the bottom (top) edge can survive in the ZGNR. This indicates that such characteristic magnetization distribution can be obtained by some means, e.g., the introduction of impurity on one edge. Compared to a wide ZGNR, a narrow ZGNR presents obvious coupling between the two edges which changes the magnetization and transmission greatly. As for the above-mentioned distinct magnetic profile, the spin transport is blocked in the abrupt domain wall due to strong spin flip scattering while remains unaffected in the helical domain wall due to the spin mixing effect. We deduce a formula of the transmission for various magnetic profiles of the ZGNRs. A new result based on this formula is that the transmission at the Fermi level can be zero, one, and two by tuning the edge magnetization. Our results provide insights into the noncollinear spin transport of the ZGNR-based devices.
Keywords:  graphene nanoribbon      spintronic transport      density functional theory      nonequilibrium Green's function  
Received:  13 July 2020      Revised:  22 September 2020      Accepted manuscript online:  14 October 2020
PACS:  72.10.-d (Theory of electronic transport; scattering mechanisms)  
  85.65.+h (Molecular electronic devices)  
  73.63.-b (Electronic transport in nanoscale materials and structures)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. NSFC11804158, NSFC61974067, NSFC91750112, and NSFC11947101).
Corresponding Authors:  These authors contributed equally. Corresponding author. E-mail: yingzhang@nuaa.edu.cn   

Cite this article: 

Yang Xiao(肖杨), Qiaoli Ye(叶巧利), Jintao Liang(梁锦涛), Xiaohong Yan(颜晓红), and Ying Zhang(张影) Different noncollinear magnetizations on two edges of zigzag graphene nanoribbons 2020 Chin. Phys. B 29 127201

[1] Geim A K and Novoselov K S Nat. Mat. 6 183 DOI: 10.1038/nmat18492007
[2] Casto Neto A H, Guinea F and Peres N Rev. Mod. Phys. 81 109 DOI: 10.1103/RevModPhys.81.1092013
[3] Zhou J, Hu T, Dong J M and Kawazoe Y Phys. Rev. B 86 035434 DOI: 10.1103/PhysRevB.86.0354342012
[4] Chen M X, Zhong Z and Weinert M Phys. Rev. B 94 075409 DOI: 10.1103/PhysRevB.94.0754092016
[5] Chen M X and Weinert M Phys. Rev. B 94 035433 DOI: 10.1103/PhysRevB.94.0354332016
[6] Ju W, Wang D, Li T, Wang H, Zhou Q, Xu Y, Li H and Gong S J. Phys.: Condens. Mat. 32 175503 DOI: 10.1088/1361-648X/ab6b882020
[7] Cui P, Zhang Q, Zhu H B, Li X X, Wang Y W, Li Q X, Zen C G and Zhang Z Y Phys. Rev. Lett. 116 026802 DOI: 10.1103/PhysRevLett.116.0268022016
[8] Pachoud A, Ferreira A, Ozyilmaz B and Castro Neto A H Phys. Rev. B 90 035444 DOI: 10.1103/PhysRevB.90.0354442014
[9] Xiao D, Liu G, Feng W, Xu X and Yao W Phys. Rev. Lett. 108 196802 DOI: 10.1103/PhysRevLett.108.1968022012
[10] Feng W, Yao Y, Zhu W, Zhou J, Yao W and Xiao D Phys. Rev. B 86 165108 DOI: 10.1103/PhysRevB.86.1651082012
[11] Huang B, Liu F, Wu J, Gu B L and Duan W Phys. Rev. B 77 153411 DOI: 10.1103/PhysRevB.77.1534112008
[12] Gmitra M and Fabian J Phys. Rev. B 92 155403 DOI: 10.1103/PhysRevB.92.1554032015
[13] Zhang W, Hajiheidari F and Mazzarello R Phys. Rev. B 96 245413 DOI: 10.1103/PhysRevB.96.2454132017
[14] Fujita M, Wakabayashi K, Nakada K and Kusakabe K J. Phys. Soc. Jpn. 65 1920 DOI: 10.1143/JPSJ.65.19201996
[15] Bai Z, Shen L, Cai Y, Wu Q, Zeng M, Han G and Feng Y P New J. Phys. 16 103033 DOI: 10.1088/1367-2630/16/10/1030332014
[16] Lee J and Fabian J Phys. Rev. B 94 195401 DOI: 10.1103/PhysRevB.94.1954012016
[17] Okada s and Oshiyama A Phys. Rev. Lett. 87 146803 DOI: 10.1103/PhysRevLett.87.1468032001
[18] Sawada K, Ishi F, Saito M, Okada S and Kawai T Nano Lett. 9 269 DOI: 10.1021/nl80285692009
[19] Jung J, Pereg-Barnea T and MacDonald A H Phys. Rev. Lett. 102 227205 DOI: 10.1103/PhysRevLett.102.2272052009
[20] Padilha J E, Pontes R B and da Silva A J R Solid State Commun. 173 24 DOI: 10.1016/j.ssc.2013.08.0222013
[21] Meunier V, Souza Filho A G and Barros E B Rev. Mod. Phys. 88 025005 DOI: 10.1103/RevModPhys.88.0250052016
[22] Yazyev O and Katsnelson M I Phys. Rev. Lett. 100 047209 DOI: 10.1103/PhysRevLett.100.0472092008
[23] Biel B, Blase X, Triozon F and Roche S Phys. Rev. Lett. 102 096803 DOI: 10.1103/PhysRevLett.102.0968032009
[24] Tombros N, Jozsa C, Popinciuc M, Jonkman H T and van Wees B J Nature 448 571 DOI: 10.1038/nature060372007
[25] Li Z, Qian H, Wu J and Duan W H Phys. Rev. Lett. 100 206802 DOI: 10.1103/PhysRevLett.100.2068022008
[26] Ozaki T, Nishio K, Weng H and Kino H Phys. Rev. B 81 075422 DOI: 10.1103/PhysRevB.81.0754222010
[27] Oda T, Pasquarello A and Car R Phys. Rev. Lett. 80 3622 DOI: 10.1103/PhysRevLett.80.36221998
[28] Wiesendanger R Rev. Mod. Phys. 81 1495 DOI: 10.1103/RevModPhys.81.14952009
[29] Bode M, Heide M, von Bergmann K, Ferriani P, Heinze S, Blugel S and Wiesendanger R Nature 447 190 DOI: 10.1038/nature058022007
[30] Yao Y, Ye F, Qi X L, Zhang S C and Fang Z Phys. Rev. B 75 041401 DOI: 10.1103/PhysRevB.75.0414012007
[31] Czerner M, Yavorsky B Y and Mertig I J. Appl. Phys. 103 07F304 DOI: 10.1063/1.28323442008
[32] Zhang Y, Yan X H, Guo Y D and Xiao Y J. Appl. Phys. 121 174303 DOI: 10.1063/1.49828922017
[33] http://www.openmx-square.org/ for the details of DFT/NEGF method as implemented in OpenMX
[34] Ozaki T and Kino H Phys. Rev. B 72 045121 DOI: 10.1103/PhysRevB.72.0451212005
[35] Soler J M, Artacho E, Gale J D, Garcia A, Junquera J, Ordejon P and Sanchez-Portal D J. Phys.: Condens. Matter 14 2745 DOI: 10.1088/0953-8984/14/11/3022002
[36] Taylor J, Guo H and Wang J Phys. Rev. B 63 121104 DOI: 10.1103/PhysRevB.63.1211042001
[37] Rungger I and Sanvito S Phys. Rev. B 78 035407 DOI: 10.1103/PhysRevB.78.0354072000
[38] Brandbyge M, Mozos J, Ordejón P, Taylor J and Stokbro K Phys. Rev. B 65 165401 DOI: 10.1103/PhysRevB.65.1654012002
[39] Zutic I, Fabian J and Das Sarma S Rev. Mod. Phys. 76 323 DOI: 10.1103/RevModPhys.76.3232004
[40] Kubler J, Hock K H and Sticht J J. Phys. F 18 469 DOI: 10.1088/0305-4608/18/3/0181988
[41] Burton J D, Sabirianov R F, Jaswal S S and Tsymbal E Y Phys. Rev. Lett. 97 077204 DOI: 10.1103/PhysRevLett.97.0772042006
[42] Liang J T, Yan X H, Zhang Y, Guo Y D and Xiao Y J. Mag. Mag. Mat. 480 101 DOI: 10.1016/j.jmmm.2019.02.0722019
[43] Press M R, Liu F, Khanna S N and Jena P Phys. Rev. B 40 399 DOI: 10.1103/PhysRevB.40.3991989
[44] Nogues J and Schuller I K J. Mag. Mag. Mat. 192 203 DOI: 10.1016/S0304-8853(98)00266-21999
[1] Polarization Raman spectra of graphene nanoribbons
Wangwei Xu(许望伟), Shijie Sun(孙诗杰), Muzi Yang(杨慕紫), Zhenliang Hao(郝振亮), Lei Gao(高蕾), Jianchen Lu(卢建臣), Jiasen Zhu(朱嘉森), Jian Chen(陈建), and Jinming Cai(蔡金明). Chin. Phys. B, 2023, 32(4): 046803.
[2] Predicting novel atomic structure of the lowest-energy FenP13-n(n=0-13) clusters: A new parameter for characterizing chemical stability
Yuanqi Jiang(蒋元祺), Ping Peng(彭平). Chin. Phys. B, 2023, 32(4): 047102.
[3] Ferroelectricity induced by the absorption of water molecules on double helix SnIP
Dan Liu(刘聃), Ran Wei(魏冉), Lin Han(韩琳), Chen Zhu(朱琛), and Shuai Dong(董帅). Chin. Phys. B, 2023, 32(3): 037701.
[4] A theoretical study of fragmentation dynamics of water dimer by proton impact
Zhi-Ping Wang(王志萍), Xue-Fen Xu(许雪芬), Feng-Shou Zhang(张丰收), and Xu Wang(王旭). Chin. Phys. B, 2023, 32(3): 033401.
[5] Plasmonic hybridization properties in polyenes octatetraene molecules based on theoretical computation
Nan Gao(高楠), Guodong Zhu(朱国栋), Yingzhou Huang(黄映洲), and Yurui Fang(方蔚瑞). Chin. Phys. B, 2023, 32(3): 037102.
[6] Effects of π-conjugation-substitution on ESIPT process for oxazoline-substituted hydroxyfluorenes
Di Wang(汪迪), Qiao Zhou(周悄), Qiang Wei(魏强), and Peng Song(宋朋). Chin. Phys. B, 2023, 32(2): 028201.
[7] High-order harmonic generation of the cyclo[18]carbon molecule irradiated by circularly polarized laser pulse
Shu-Shan Zhou(周书山), Yu-Jun Yang(杨玉军), Yang Yang(杨扬), Ming-Yue Suo(索明月), Dong-Yuan Li(李东垣), Yue Qiao(乔月), Hai-Ying Yuan(袁海颖), Wen-Di Lan(蓝文迪), and Mu-Hong Hu(胡木宏). Chin. Phys. B, 2023, 32(1): 013201.
[8] First-principles study of a new BP2 two-dimensional material
Zhizheng Gu(顾志政), Shuang Yu(于爽), Zhirong Xu(徐知荣), Qi Wang(王琪), Tianxiang Duan(段天祥), Xinxin Wang(王鑫鑫), Shijie Liu(刘世杰), Hui Wang(王辉), and Hui Du(杜慧). Chin. Phys. B, 2022, 31(8): 086107.
[9] Adaptive semi-empirical model for non-contact atomic force microscopy
Xi Chen(陈曦), Jun-Kai Tong(童君开), and Zhi-Xin Hu(胡智鑫). Chin. Phys. B, 2022, 31(8): 088202.
[10] Collision site effect on the radiation dynamics of cytosine induced by proton
Xu Wang(王旭), Zhi-Ping Wang(王志萍), Feng-Shou Zhang(张丰收), and Chao-Yi Qian (钱超义). Chin. Phys. B, 2022, 31(6): 063401.
[11] First principles investigation on Li or Sn codoped hexagonal tungsten bronzes as the near-infrared shielding material
Bo-Shen Zhou(周博深), Hao-Ran Gao(高浩然), Yu-Chen Liu(刘雨辰), Zi-Mu Li(李子木),Yang-Yang Huang(黄阳阳), Fu-Chun Liu(刘福春), and Xiao-Chun Wang(王晓春). Chin. Phys. B, 2022, 31(5): 057804.
[12] Laser-induced fluorescence experimental spectroscopy and theoretical calculations of uranium monoxide
Xi-Lin Bai(白西林), Xue-Dong Zhang(张雪东), Fu-Qiang Zhang(张富强), and Timothy C Steimle. Chin. Phys. B, 2022, 31(5): 053301.
[13] Tunable electronic properties of GaS-SnS2 heterostructure by strain and electric field
Da-Hua Ren(任达华), Qiang Li(李强), Kai Qian(钱楷), and Xing-Yi Tan(谭兴毅). Chin. Phys. B, 2022, 31(4): 047102.
[14] Insights into the adsorption of water and oxygen on the cubic CsPbBr3 surfaces: A first-principles study
Xin Zhang(张鑫), Ruge Quhe(屈贺如歌), and Ming Lei(雷鸣). Chin. Phys. B, 2022, 31(4): 046401.
[15] Influence of intramolecular hydrogen bond formation sites on fluorescence mechanism
Hong-Bin Zhan(战鸿彬), Heng-Wei Zhang(张恒炜), Jun-Jie Jiang(江俊杰), Yi Wang(王一), Xu Fei(费旭), and Jing Tian(田晶). Chin. Phys. B, 2022, 31(3): 038201.
No Suggested Reading articles found!