CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Different noncollinear magnetizations on two edges of zigzag graphene nanoribbons |
Yang Xiao(肖杨)1,†, Qiaoli Ye(叶巧利)1,†, Jintao Liang(梁锦涛)1, Xiaohong Yan(颜晓红)2, and Ying Zhang(张影)1,‡ |
1 College of Science, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China; 2 School of Material Science and Engineering, Jiangsu University, Zhenjiang 212013, China |
|
|
Abstract Based on density functional theory and non-equilibrium Green's function method, we studied noncollinear magnetism and spin transport in a 180° domain wall made of zigzag graphene nanoribbon (ZGNR) with different noncollinear magnetic profiles on the top and bottom edges. Our results show that a helical domain wall on the top (bottom) edge and an abrupt domain wall on the bottom (top) edge can survive in the ZGNR. This indicates that such characteristic magnetization distribution can be obtained by some means, e.g., the introduction of impurity on one edge. Compared to a wide ZGNR, a narrow ZGNR presents obvious coupling between the two edges which changes the magnetization and transmission greatly. As for the above-mentioned distinct magnetic profile, the spin transport is blocked in the abrupt domain wall due to strong spin flip scattering while remains unaffected in the helical domain wall due to the spin mixing effect. We deduce a formula of the transmission for various magnetic profiles of the ZGNRs. A new result based on this formula is that the transmission at the Fermi level can be zero, one, and two by tuning the edge magnetization. Our results provide insights into the noncollinear spin transport of the ZGNR-based devices.
|
Received: 13 July 2020
Revised: 22 September 2020
Accepted manuscript online: 14 October 2020
|
PACS:
|
72.10.-d
|
(Theory of electronic transport; scattering mechanisms)
|
|
85.65.+h
|
(Molecular electronic devices)
|
|
73.63.-b
|
(Electronic transport in nanoscale materials and structures)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. NSFC11804158, NSFC61974067, NSFC91750112, and NSFC11947101). |
Corresponding Authors:
†These authors contributed equally. ‡Corresponding author. E-mail: yingzhang@nuaa.edu.cn
|
Cite this article:
Yang Xiao(肖杨), Qiaoli Ye(叶巧利), Jintao Liang(梁锦涛), Xiaohong Yan(颜晓红), and Ying Zhang(张影) Different noncollinear magnetizations on two edges of zigzag graphene nanoribbons 2020 Chin. Phys. B 29 127201
|
[1] Geim A K and Novoselov K S Nat. Mat. 6 183 DOI: 10.1038/nmat18492007 [2] Casto Neto A H, Guinea F and Peres N Rev. Mod. Phys. 81 109 DOI: 10.1103/RevModPhys.81.1092013 [3] Zhou J, Hu T, Dong J M and Kawazoe Y Phys. Rev. B 86 035434 DOI: 10.1103/PhysRevB.86.0354342012 [4] Chen M X, Zhong Z and Weinert M Phys. Rev. B 94 075409 DOI: 10.1103/PhysRevB.94.0754092016 [5] Chen M X and Weinert M Phys. Rev. B 94 035433 DOI: 10.1103/PhysRevB.94.0354332016 [6] Ju W, Wang D, Li T, Wang H, Zhou Q, Xu Y, Li H and Gong S J. Phys.: Condens. Mat. 32 175503 DOI: 10.1088/1361-648X/ab6b882020 [7] Cui P, Zhang Q, Zhu H B, Li X X, Wang Y W, Li Q X, Zen C G and Zhang Z Y Phys. Rev. Lett. 116 026802 DOI: 10.1103/PhysRevLett.116.0268022016 [8] Pachoud A, Ferreira A, Ozyilmaz B and Castro Neto A H Phys. Rev. B 90 035444 DOI: 10.1103/PhysRevB.90.0354442014 [9] Xiao D, Liu G, Feng W, Xu X and Yao W Phys. Rev. Lett. 108 196802 DOI: 10.1103/PhysRevLett.108.1968022012 [10] Feng W, Yao Y, Zhu W, Zhou J, Yao W and Xiao D Phys. Rev. B 86 165108 DOI: 10.1103/PhysRevB.86.1651082012 [11] Huang B, Liu F, Wu J, Gu B L and Duan W Phys. Rev. B 77 153411 DOI: 10.1103/PhysRevB.77.1534112008 [12] Gmitra M and Fabian J Phys. Rev. B 92 155403 DOI: 10.1103/PhysRevB.92.1554032015 [13] Zhang W, Hajiheidari F and Mazzarello R Phys. Rev. B 96 245413 DOI: 10.1103/PhysRevB.96.2454132017 [14] Fujita M, Wakabayashi K, Nakada K and Kusakabe K J. Phys. Soc. Jpn. 65 1920 DOI: 10.1143/JPSJ.65.19201996 [15] Bai Z, Shen L, Cai Y, Wu Q, Zeng M, Han G and Feng Y P New J. Phys. 16 103033 DOI: 10.1088/1367-2630/16/10/1030332014 [16] Lee J and Fabian J Phys. Rev. B 94 195401 DOI: 10.1103/PhysRevB.94.1954012016 [17] Okada s and Oshiyama A Phys. Rev. Lett. 87 146803 DOI: 10.1103/PhysRevLett.87.1468032001 [18] Sawada K, Ishi F, Saito M, Okada S and Kawai T Nano Lett. 9 269 DOI: 10.1021/nl80285692009 [19] Jung J, Pereg-Barnea T and MacDonald A H Phys. Rev. Lett. 102 227205 DOI: 10.1103/PhysRevLett.102.2272052009 [20] Padilha J E, Pontes R B and da Silva A J R Solid State Commun. 173 24 DOI: 10.1016/j.ssc.2013.08.0222013 [21] Meunier V, Souza Filho A G and Barros E B Rev. Mod. Phys. 88 025005 DOI: 10.1103/RevModPhys.88.0250052016 [22] Yazyev O and Katsnelson M I Phys. Rev. Lett. 100 047209 DOI: 10.1103/PhysRevLett.100.0472092008 [23] Biel B, Blase X, Triozon F and Roche S Phys. Rev. Lett. 102 096803 DOI: 10.1103/PhysRevLett.102.0968032009 [24] Tombros N, Jozsa C, Popinciuc M, Jonkman H T and van Wees B J Nature 448 571 DOI: 10.1038/nature060372007 [25] Li Z, Qian H, Wu J and Duan W H Phys. Rev. Lett. 100 206802 DOI: 10.1103/PhysRevLett.100.2068022008 [26] Ozaki T, Nishio K, Weng H and Kino H Phys. Rev. B 81 075422 DOI: 10.1103/PhysRevB.81.0754222010 [27] Oda T, Pasquarello A and Car R Phys. Rev. Lett. 80 3622 DOI: 10.1103/PhysRevLett.80.36221998 [28] Wiesendanger R Rev. Mod. Phys. 81 1495 DOI: 10.1103/RevModPhys.81.14952009 [29] Bode M, Heide M, von Bergmann K, Ferriani P, Heinze S, Blugel S and Wiesendanger R Nature 447 190 DOI: 10.1038/nature058022007 [30] Yao Y, Ye F, Qi X L, Zhang S C and Fang Z Phys. Rev. B 75 041401 DOI: 10.1103/PhysRevB.75.0414012007 [31] Czerner M, Yavorsky B Y and Mertig I J. Appl. Phys. 103 07F304 DOI: 10.1063/1.28323442008 [32] Zhang Y, Yan X H, Guo Y D and Xiao Y J. Appl. Phys. 121 174303 DOI: 10.1063/1.49828922017 [33] http://www.openmx-square.org/ for the details of DFT/NEGF method as implemented in OpenMX [34] Ozaki T and Kino H Phys. Rev. B 72 045121 DOI: 10.1103/PhysRevB.72.0451212005 [35] Soler J M, Artacho E, Gale J D, Garcia A, Junquera J, Ordejon P and Sanchez-Portal D J. Phys.: Condens. Matter 14 2745 DOI: 10.1088/0953-8984/14/11/3022002 [36] Taylor J, Guo H and Wang J Phys. Rev. B 63 121104 DOI: 10.1103/PhysRevB.63.1211042001 [37] Rungger I and Sanvito S Phys. Rev. B 78 035407 DOI: 10.1103/PhysRevB.78.0354072000 [38] Brandbyge M, Mozos J, Ordejón P, Taylor J and Stokbro K Phys. Rev. B 65 165401 DOI: 10.1103/PhysRevB.65.1654012002 [39] Zutic I, Fabian J and Das Sarma S Rev. Mod. Phys. 76 323 DOI: 10.1103/RevModPhys.76.3232004 [40] Kubler J, Hock K H and Sticht J J. Phys. F 18 469 DOI: 10.1088/0305-4608/18/3/0181988 [41] Burton J D, Sabirianov R F, Jaswal S S and Tsymbal E Y Phys. Rev. Lett. 97 077204 DOI: 10.1103/PhysRevLett.97.0772042006 [42] Liang J T, Yan X H, Zhang Y, Guo Y D and Xiao Y J. Mag. Mag. Mat. 480 101 DOI: 10.1016/j.jmmm.2019.02.0722019 [43] Press M R, Liu F, Khanna S N and Jena P Phys. Rev. B 40 399 DOI: 10.1103/PhysRevB.40.3991989 [44] Nogues J and Schuller I K J. Mag. Mag. Mat. 192 203 DOI: 10.1016/S0304-8853(98)00266-21999 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|