Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(12): 120303    DOI: 10.1088/1674-1056/abc0d1
GENERAL Prev   Next  

Optimal parameter estimation of open quantum systems

Yinghua Ji(嵇英华)1,2, Qiang Ke(柯强)1,2, and Juju Hu(胡菊菊)1,2,
1 College of Physics and Communication Electronics, Jiangxi Normal University, Nanchang 330022, China; 2 Key Laboratory of Photoelectronics and Telecommunication of Jiangxi Province, Nanchang 330022, China
Abstract  In quantum information technologies, quantum weak measurement is beneficial for protecting coherence of systems. In order to further improve the protection effect of quantum weak measurement on coherence, we propose an optimization scheme of quantum Fisher information (QFI) protection in an open quantum system by combing no-knowledge quantum feedback control with quantum weak measurement. On the basis of solving the dynamic equations of a stochastic two-level quantum system under feedback control, we compare the effects of different feedback Hamiltonians on QFI and find that via no-knowledge quantum feedback, the observation operator σ x (or σ x and σ z ) can protect QFI for a long time. Namely, no-knowledge quantum feedback can improve the estimation precision of feedback coefficient as well as that of detection coefficient.
Keywords:  no-knowledge quantum feedback      real-time parameters estimation      quantum Fisher information (QFI)      open quantum system  
Received:  21 April 2020      Revised:  26 August 2020      Accepted manuscript online:  14 October 2020
PACS:  03.65.Yz (Decoherence; open systems; quantum statistical methods)  
  03.65.Ud (Entanglement and quantum nonlocality)  
  42.50.Pq (Cavity quantum electrodynamics; micromasers)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61663016 and 11264015).
Corresponding Authors:  Corresponding author. E-mail: jyh2006@jxnu.edu.cn   

Cite this article: 

Yinghua Ji(嵇英华), Qiang Ke(柯强), and Juju Hu(胡菊菊) Optimal parameter estimation of open quantum systems 2020 Chin. Phys. B 29 120303

[1] Liu X B, Jing J L, Wang J C and Tian Z H Quantum Information Processing 19 26 DOI: 10.1007/s11128-019-2524-y2020
[2] Zhou L C, Jin F J, Wu H H and Wang B J. Cent. South Univ. 26 3328 DOI: 10.1007/s11771-019-4256-72019
[3] Giovannetti V, Lloyd S and Maccone L Phys. Rev. Lett. 96 010401 DOI: 10.1103/PhysRevLett.96.0104012006
[4] Fiderer L J, Julien M.E. Fra?sse L M E and Braun D Phys. Rev. Lett. 123 250502 DOI: 10.1103/PhysRevLett.123.2505022019
[5] Helstrom C W1976 Mathematics in Science and Engineering 123(New York: Elsevier)
[6] Fujiwara A and Imai H J. Phys. A 41 255304 DOI: 10.1088/1751-8113/41/25/2553042008
[7] Braunstein S L and Caves C M Phys. Rev. Lett. 72 3439 DOI: 10.1103/PhysRevLett.72.34391994
[8] Braun D, Adesso G, Benatti F, Floreanini R, Marzolino U, Mitchell M W and Pirandola S Rev. Mod. Phys. 90 035006 DOI: 10.1103/RevModPhys.90.0350062018
[9] Qiao J H, Wang Z, Wang J, Li M, Shen S Q and Ma Z H Int. J. Theor. Phys. 58 3998 DOI: 10.1007/s10773-019-04266-62019
[10] Modi K, Cable H, Williamson M and Vedral V Phys. Rev. X 1 021022 DOI: 10.1103/PhysRevX.1.0210222011
[11] Haine S A and Szigeti S S Phys. Rev. A 92 032317 DOI: 10.1103/PhysRevA.92.0323172015
[12] Li Y L, Xiao X and Yao Y Phys. Rev. A 91 052105 DOI: 10.1103/PhysRevA.91.0521052015
[13] Tan Q S, Huang Y X, Yin X L, Kuang L M and Wang X G Phys. Rev. A 87 032102 DOI: 10.1103/PhysRevA.87.0321022013
[14] Cui W, Xi Z R and Pan Y Phys. Rev. A 77 032117 DOI: 10.1103/PhysRevA.77.0321172008
[15] Bonnard Band Sugny D SIAM J. Control Optim. 48 1289 DOI: 10.1137/0807170432009
[16] Judson R S and Rabitz H Phys. Rev. Lett. 68 1500 DOI: 10.1103/PhysRevLett.68.15001992
[17] Wang L C, Houa S C, Yia X X, Dong D Y and Petersen I. R Phys. Lett. A 378 1074 DOI: 10.1016/j.physleta.2014.02.0272014
[18] Zheng Q, Yao Y and Li Y Phys. Rev. A 93 013848 DOI: 10.1103/PhysRevA.93.0138482016
[19] Gammelmark S and Molmer K Phys. Rev. A 87 032115 DOI: 10.1103/PhysRevA.87.0321152013
[20] Ma S Q, Zhu H Jand Zhang G F Phys. Lett. A 381 1386 DOI: 10.1016/j.physleta.2017.02.0272017
[21] Hamerly R and Mabuchi H Phys. Rev. A 87 013815 DOI: 10.1103/PhysRevA.87.0138152013
[22] Xiao X, Yao Y, Zhong W J, Li Y L and Xie Y M Phys. Rev. A 93 012307 DOI: 10.1103/PhysRevA.93.0123072016
[23] Blok M S, Bonato C, Markham M L, Twitchen D J, Dobrovitski V V and Hanson R Nat. Phys. 10 189 DOI: 10.1038/NPHYS28812014
[24] Higgins B L, Berry D W, Bartlett S D, Wiseman H M and Pryde G J Nature 450 393 DOI: 10.1038/nature062572007
[25] Dong D Y and Petersen I R Automatica 48 725 DOI: 10.1016/j.automatica.2012.02.0032012
[26] Szigeti S S, Carvalho A R R, Morley J G and Hush M R Phys. Rev. Lett. 113 020407 DOI: 10.1103/PhysRevLett.113.0204072014
[27] Lecamwasam R L, Hush M R, James M R and Carvalho A R R Phys. Rev. A 95 013828 DOI: 10.1103/PhysRevA.95.0138282017
[28] Kiilerich A H and M?lmer K Phys. Rev. A 94 032103 DOI: 10.1103/PhysRevA.94.0321032016
[29] Berrada K Phys. Rev. A 88 035806 DOI: 10.1103/PhysRevA.88.0358062013
[30] Liu J, Jing X and Wang X Phys. Rev. A 88 042316 DOI: 10.1103/PhysRevA.88.0423162013
[31] Anouz K E, Allati A E, Metwally N and Mourabit T Appl. Phys. B 125 11 DOI: 10.1007/s00340-018-7122-72019
[32] Yuen H P and Lax M IEEE Trans. Inf. Theory 19 740 DOI: 10.1109/TIT.1973.10551031973
[33] Knysh S, Smelyanskiy V N and Durkin G A Phys. Rev. A 83 021804 DOI: 10.1103/PhysRevA.83.0218042011
[34] Zhang Y M, Li X W, Yang W and Jin G R Phys. Rev. A 83 043832 DOI: 10.1103/PhysRevA.83.0438322013
[35] Liu J, Yuan H D, Lu X M and Wang X G J. Phys. A: Math. Theor. 53 023001 DOI: 10.1088/1751-8121/ab5d4d2020
[36] Dittmann J J. Phys. A: Math. Gen. 32 2663 DOI: 10.1088/0305-4470/32/14/0071999
[37] Zhong W, Sun Z, Ma J, Wang X G and Nori F Phys. Rev. A 87 022337 DOI: 10.1103/PhysRevA.87.0223372013
[38] Lindblad G Commun. Math. Phys. 48 119 DOI: 10.1007/BF016084991976
[39] Wiseman H M Phys. Rev. A 49 2133 DOI: 10.1103/PhysRevA.49.21331994
[40] Braginsky V B and Khalili F Y Rev. Mod. Phys. 68 1 DOI: 10.1103/RevModPhys.68.11996
[41] Braunstein S L, Caves C M and Milburn G J Ann. Phys. (N.Y.) 247 135 DOI: 10.1006/aphy.1996.00401996
[42] Eastman J K, Szigeti S S, Hope J J and Carvalho A R R Phys. Rev. A 99 012111 DOI: 10.1103/PhysRevA.99.0121112019
[43] Haine S A and Szigeti S S Phys. Rev. A 92 032317 DOI: 10.1103/PhysRevA.92.0323172015
[44] Guevara I and Viviescas C Phys. Rev. A 90 012338 DOI: 10.1103/PhysRevA.90.0123382014
[45] Xie Dand Xu C L Chin. Phys. B 27 060303 DOI: 10.1088/1674-1056/27/6/0603032018
[46] Cai S H, Hu J J and Ji Y H Optik 198 163271 DOI: 10.1016/j.ijleo.2019.1632712019
[47] Gregoratti M and Werner R F J. Mod. Opt. 50 915 DOI: 10.1080/095003403082345412003
[48] Buscemi F, Chiribella G and D'Ariano G M Phys. Rev. Lett. 95 090501 DOI: 10.1103/PhysRevLett.95.0905012005
[49] Buscemi F, Chiribella G and D'Ariano G M Open Syst. Inf. Dyn. 14 53 DOI: 10.1007/s11080-007-9028-42007
[50] Buscemi F Phys. Rev. Lett. 99 180501 DOI: 10.1103/PhysRevLett.99.1805012007
[51] Yao Y, Ge L, Xiao X, Wang X G and Sun C P Phys. Rev. A 90 022327 DOI: 10.1103/PhysRevA.90.0223272014
[52] Khaneja N, Reiss T, Hehlet C, Schulte-Herbruggen T and Glaser S J J. Magn. Reson. 172 296 DOI: 10.1016/j.jmr.2004.11.0042005
[53] Liu J and Yuan H Phys. Rev. A 96 012117 DOI: 10.1103/PhysRevA.96.0121172017
[54] Liu J and Yuan H Phys. Rev. A 96 042114 DOI: 10.1103/PhysRevA.96.0421142017
[1] Geometric phase under the Unruh effect with intermediate statistics
Jun Feng(冯俊), Jing-Jun Zhang(张精俊), and Qianyi Zhang(张倩怡). Chin. Phys. B, 2022, 31(5): 050312.
[2] Dynamical learning of non-Markovian quantum dynamics
Jintao Yang(杨锦涛), Junpeng Cao(曹俊鹏), and Wen-Li Yang(杨文力). Chin. Phys. B, 2022, 31(1): 010314.
[3] Influences of spin-orbit interaction on quantum speed limit and entanglement of spin qubits in coupled quantum dots
M Bagheri Harouni. Chin. Phys. B, 2021, 30(9): 090301.
[4] Fine-grained uncertainty relation for open quantum system
Shang-Bin Han(韩尚斌), Shuai-Jie Li(李帅杰), Jing-Jun Zhang(张精俊), and Jun Feng(冯俊). Chin. Phys. B, 2021, 30(6): 060315.
[5] Application of non-Hermitian Hamiltonian model in open quantum optical systems
Hong Wang(王虹), Yue Qin(秦悦), Jingxu Ma(马晶旭), Heng Shen(申恒), Ying Hu(胡颖), and Xiaojun Jia(贾晓军). Chin. Phys. B, 2021, 30(5): 050301.
[6] Quantum speed limit time and entanglement in a non-Markovian evolution of spin qubits of coupled quantum dots
M. Bagheri Harouni. Chin. Phys. B, 2020, 29(12): 124203.
[7] Influence of homodyne-based feedback control on the entropic uncertainty in open quantum system
Juju Hu(胡菊菊), Qin Xue(薛琴). Chin. Phys. B, 2019, 28(7): 070303.
[8] Dynamical control of population and entanglement for open Λ-type atoms by engineering the environment
Xiao-Lan Wang(王晓岚), Yu-Kun Ren(任玉坤), Hao-Sheng Zeng(曾浩生). Chin. Phys. B, 2019, 28(3): 030301.
[9] Controlling of entropic uncertainty in open quantum system via proper placement of quantum register
Ying-Hua Ji(嵇英华), Qiang Ke(柯强), Ju-Ju Hu(胡菊菊). Chin. Phys. B, 2018, 27(10): 100302.
[10] Nonlinear dissipative dynamics of a two-component atomic condensate coupling with a continuum
Zhong Hong-Hua (钟宏华), Xie Qiong-Tao (谢琼涛), Xu Jun (徐军), Hai Wen-Hua (海文华), Li Chao-Hong (李朝红). Chin. Phys. B, 2014, 23(2): 020314.
[11] Comparison between non-Markovian dynamics with and without rotating wave approximation
Tang Ning (唐宁), Xu Tian-Tian (徐甜甜), Zeng Hao-Sheng (曾浩生). Chin. Phys. B, 2013, 22(3): 030304.
[12] Distribution of non-Markovian intervals for open qubit systems
Zheng Yan-Ping(郑艳萍), Tang Ning(唐宁), Wang Guo-You(王国友), and Zeng Hao-Sheng(曾浩生) . Chin. Phys. B, 2011, 20(11): 110301.
No Suggested Reading articles found!