Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(11): 117102    DOI: 10.1088/1674-1056/abaed5
REVIEW Prev   Next  

Recent progress on excitation and manipulation of spin-waves in spin Hall nano-oscillators

Liyuan Li(李丽媛)1, Lina Chen(陈丽娜)1,2, †, Ronghua Liu(刘荣华)1,, ‡, and Youwei Du(都有为)1
1 National Laboratory of Solid State Microstructures, School of Physics and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
2 New Energy Technology Engineering Laboratory of Jiangsu Provence & School of Science, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
Abstract  

Spin Hall nano oscillator (SHNO), a new type spintronic nano-device, can electrically excite and control spin waves in both nanoscale magnetic metals and insulators with low damping by the spin current due to spin Hall effect and interfacial Rashba effect. Several spin-wave modes have been excited successfully and investigated substantially in SHNOs based on dozens of different ferromagnetic/nonmagnetic (FM/NM) bilayer systems (e.g., FM = Py, [Co/Ni], Fe, CoFeB, Y3Fe5O12; NM = Pt, Ta, W). Here, we will review recent progress about spin-wave excitation and experimental parameters dependent dynamics in SHNOs. The nanogap SHNOs with in-plane magnetization exhibit a nonlinear self-localized bullet soliton localized at the center of the gap between the electrodes and a secondary high-frequency mode which coexists with the primary bullet mode at higher currents. While in the nanogap SHNOs with out of plane magnetization, besides both nonlinear bullet soliton and propagating spin-wave mode are achieved and controlled by varying the external magnetic field and current, the magnetic bubble skyrmion mode also can be excited at a low in-plane magnetic field. These spin-wave modes show thermal-induced mode hopping behavior at high temperature due to the coupling between the modes mediated by thermal magnon mediated scattering. Moreover, thanks to the perpendicular magnetic anisotropy induced effective field, the single coherent mode also can be achieved without applying an external magnetic field. The strong nonlinear effect of spin waves makes SHNOs easy to achieve synchronization with external microwave signals or mutual synchronization between multiple oscillators which improve the coherence and power of oscillation modes significantly. Spin waves in SHNOs with an external free magnetic layer have a wide range of applications from as a nanoscale signal source of low power consumption magnonic devices to spin-based neuromorphic computing systems in the field of artificial intelligence.

Keywords:  spin-orbit torque      spin Hall nano-oscillator      spin-waves      synchronization  
Received:  03 July 2020      Revised:  07 August 2020      Accepted manuscript online:  13 August 2020
Fund: the National Key Research and Development Program of China (Grant No. 2016YFA0300803), the National Natural Science Foundation of China (Grant Nos. 11774150, 12074178, and 12004171), the Applied Basic Research Programs of Science and Technology Commission Foundation of Jiangsu Province, China (Grant No. BK20170627), and the Open Research Fund of Jiangsu Provincial Key Laboratory for Nanotechnology.
Corresponding Authors:  Corresponding author. E-mail: linachen@nju.edu.cn Corresponding author. E-mail: rhliu@nju.edu.cn   

Cite this article: 

Liyuan Li(李丽媛), Lina Chen(陈丽娜), Ronghua Liu(刘荣华), and Youwei Du(都有为) Recent progress on excitation and manipulation of spin-waves in spin Hall nano-oscillators 2020 Chin. Phys. B 29 117102

Fig. 1.  

Several types of magnetization dynamical modes observed in spin-torque nano-oscillators. (a)–(b) 3D spatial intensity distribution of the quasilinear propagating spin-wave mode (a) and nonlinear localized bullet mode (b), respectively. (c)–(f) Snapshots of the spatial magnetization distribution of the dynamical droplet mode or bubble mode without nontrivial topological property (c), Bloch-type (d), or Neel-type bubble skyrmion mode (e) with a topological number N = 1, and gyrotropic vortex mode (f) with a topological number N = 1/2, respectively. The color and vector represent the amplitude of the out-of-plane magnetization component Mz (left color label) and the direction of M in (c)–(e), respectively. The right color label represents the in-plane magnetization component My in (f). (a) and (b) are adopted from Refs. [21,25] with permission.

Fig. 2.  

(a) Schematic of the SHNO device structure and the experimental setup. (b) Schematic of the cross-sectional view of charge and spin currents distribution of SHNO device. (c) Pseudocolor map of the power spectral density (PSD) of the experimentally obtained microwave signal of nanogap SHNO based on a Py(5)/Pt(3) bilayer for varying current at H = 200 Oe and θ = 60°. (d) Pseudocolor map of the experimentally obtained PSD for the varying field at I = 17 mA and θ = 60°. Insets in (c) and (d): Normalized spatial maps of ${m}_{x}^{2}$ corresponding to the two dominant auto-oscillation modes at f1 = 2.86 GHz, f2 = 3.97 GHz and 2f1 = 5.72 GHz, respectively, which were obtained by micromagnetic simulations. Panels are adapted from Refs. [36,38].

Fig. 3.  

(a) The schematic of the SHNO structure and the experimental setup. (b) PSD signals obtained at I = 6.7 mA and the labeled values of the magnetic field for the gate voltage Vg = 0. (c) PSD signals detected at I = 6.2 mA and the labeled values of Vg varying from −5 V to 5 V at H = 340 Oe. Inset: frequency shift vs. gate voltage. (d) Pseudocolor map of three-generation microwave spectra at Vg = 0, ± 5 V with different currents. Reproduced with permission from from Ref. [37].

Fig. 4.  

(a) Anomalous Hall effect measured in a film with in-plane (triangles) and out-of-plane (circles) field at 295 K. (b) Dependence of the device resistance on the direction of in-plane field H = 1 kOe, due to the anisotropic magnetoresistance of the magnetic film. (c) Pseudocolor map of the PSD for varying current at H = 1.1 kOe. The dashed line marks the FMR of the magnetic film. Insets hint the spatial characteristics of the propagating mode (left) and bullet mode (right), respectively. (d) PSD signals obtained varying field H with a step of 100 Oe at I = 13 mA. (e)–(g) Snapshot of dynamical magnetization obtained from micromagnetic simulations of propagating spin-wave, bullet mode, and magnetic bubble skyrmion, respectively. The out-of-plane and in-plane magnetization components are represented by color and vector, respectively. Reproduced with permission from Refs. [20, 21].

Fig. 5.  

Temperature effect on mode hopping. Pseudocolor maps of the dependence of the generated microwave spectra on the current at several selected fields measured at T = 295 K (a)–(c) and T = 6 K (d)–(f). Reproduced with permission from Ref. [49].

Fig. 6.  

Microwave spectra and micromagnetic simulation of the VNC-SHNO. (a) The device structure and the experimental setup of VNC-SHNO. (b)–(c) Pseudocolor plots of the current-dependent spectra of SHNO experimentally obtained at fields H = 960 Oe (b), and H = 1090 Oe (c) with angle ϕ = 82° relative to the film plane and T = 295 K. (d) Representative calculated auto-oscillation spectrum at H = 1000 Oe, ϕ = 85°, and I = 14 mA. (e) Normalized spatial maps of ${m}_{x}^{2}$ of the fundamental droplet mode. The boundary of the active simulation region and the nanocontact are marked by the large solid circle and dotted circle, respectively. Reproduced with permission from Ref. [51].

Fig. 7.  

(a) BLS spectra of SHNO under an external RF signal. The dashed line represents that the auto-oscillation frequency exactly follows fMW/2. (b) A scanning electron microscope image of an SHNO array with nine 120-nm-wide nanoconstrictions each separated by 300 nm. (c)–(d) BLS spatial intensity map (c) and BLS frequency map (d) obtained at I = 3.21 mA. Reproduced with permission from Refs. [52, 53].

Fig. 8.  

Spin-waves propagation in a microscale waveguide. (a) AFM image (top panel) and schematic of the device structure and the experimental setup (bottom panel). (b) A normalized color-coded map of the measured BLS intensity. (c) The simulation snapshot of the out-of-plane component mz of the dynamic magnetization. Reproduced with permission from Ref. [58].

Fig. 9.  

(a) A schematic of the biological neural network. (b) Top: the schematic experiment setup of an STNO. Bottom: The nonlinear response (relaxation process) of the output voltage V(t) of SHNO with the stimulation voltage Vin. (c)–(f) Training and prediction results for two nonlinear dynamic systems. (c)–(d) The second-order nonlinear system described by Eq. (1): theoretical output (black line) vs. prediction result (red line) in the training phase (c) and the test phase (d). (e) and (f) NARMA10 described by Eq. (2), same as (c) and (d). Reproduced with permission from Refs. [55, 67].

[1]
Berger L 1996 Phys. Rev. B 54 9353 DOI: 10.1103/PhysRevB.54.9353
[2]
Slonczewski J C 1996 J. Magn. Magn. Mater. 159 L1 DOI: 10.1016/0304-8853(96)00062-5
[3]
Liu H, Bedau D, Backes D, Katine J A, Langer J, Kent A D 2010 Appl. Phys. Lett. 97 242510 DOI: 10.1063/1.3527962
[4]
Choi G M, Moon C H, Min B C, Lee K J, Cahill D G 2015 Nat. Phys. 11 576 DOI: 10.1038/nphys3355
[5]
Locatelli N, Cros V, Grollier J 2014 Nat. Mater. 13 11 DOI: 10.1038/nmat3823
[6]
Chumak A V, Vasyuchka V I, Serga A A, Hillebrands B 2015 Nat. Phys. 11 453 DOI: 10.1038/nphys3347
[7]
Slavin A, Tiberkevich V 2009 IEEE Transactions on Magnetics 45 1875 DOI: 10.1109/TMAG.2008.2009935
[8]
Uchida K, Takahashi S, Harii K, Ieda J, Koshibae W, Ando K, Maekawa S, Saitoh E 2008 Nature 455 778 DOI: 10.1038/nature07321
[9]
Jungwirth T, Wunderlich J, Olejnik K 2012 Nat. Mater. 11 382 DOI: 10.1038/nmat3279
[10]
Hoffmann A 2013 IEEE Trans. Magnet. 49 5172 DOI: 10.1109/TMAG.20
[11]
Chernyshov A, Overby M, Liu X Y, Furdyna J K, Lyanda-Geller Y, Rokhinson L P 2009 Nat. Phys. 5 656 DOI: 10.1038/nphys1362
[12]
Bychkov Y A, Rashba E I 1984 J. Phys. C-Solid State Phys. 17 6039 DOI: 10.1088/0022-3719/17/33/015
[13]
Moriya T 1960 Phys. Rev. 120 91 DOI: 10.1103/PhysRev.120.91
[14]
Feng X Y, Zhang Q H, Zhang H W, Zhang Y, Zhong R, Lu B W, Cao J W, Fan X L 2019 Chin. Phys. B 28 107105 DOI: 10.1088/1674-1056/ab425e
[15]
Sampaio J, Cros V, Rohart S, Thiaville A, Fert A 2013 Nat. Nanotechnol. 8 839 DOI: 10.1038/nnano.2013.210
[16]
Fu Q W, Li Y, Chen L N, Ma F S, Li H T, Xu Y B, Liu B, Liu R H, Du Y W 2020 Chin. Phys. Lett. 37 087503 DOI: 10.1088/0256-307X/37/8/087503
[17]
Liu R H, Lim W L, Urazhdin S 2013 Phys. Rev. Lett. 110 147601 DOI: 10.1103/PhysRevLett.110.147601
[18]
Gerhart G, Bankowski E, Melkov G A, Tiberkevich V S, Slavin A N 2007 Phys. Rev. B 76 024437 DOI: 10.1103/PhysRevB.76.024437
[19]
Pi U H, Kim K W, Bae J Y, Lee S C, Cho Y J, Kim K S, Seo S 2010 Appl. Phys. Lett. 97 162507 DOI: 10.1063/1.3502596
[20]
Liu R H, Lim W L, Urazhdin S 2015 Phys. Rev. Lett. 114 137201 DOI: 10.1103/PhysRevLett.114.137201
[21]
Macia F, Hoppensteadt F C, Kent A D 2014 Nanotechnology 25 045303 DOI: 10.1088/0957-4484/25/4/045303
[22]
Slonczewski J C 1999 J. Magn. Magn. Mater. 195 L261 DOI: 10.1016/S0304-8853(99)00043-8
[23]
Madami M, Bonetti S, Consolo G, Tacchi S, Carlotti G, Gubbiotti G, Mancoff F B, Yar M A, Akerman J 2011 Nat. Nanotechnol. 6 635 DOI: 10.1038/nnano.2011.140
[24]
Dumas R K, Iacocca E, Bonetti S, Sani S R, Mohseni S M, Eklund A, Persson J, Heinonen O, Akerman J 2013 Phys. Rev. Lett. 110 257202 DOI: 10.1103/PhysRevLett.110.257202
[25]
Clerc M G, Coulibaly S, Laroze D, Leon A O, Nunez A S 2015 Phys. Rev. B 91 224426 DOI: 10.1103/PhysRevB.76.144410
[26]
Consolo G, Azzerboni B, Gerhart G, Melkov G A, Tiberkevich V, Slavin A N 2007 Phys. Rev. B 76 144410 DOI: 10.1103/PhysRevLett.105.217204
[27]
Bonetti S, Tiberkevich V, Consolo G, Finocchio G, Muduli P, Mancoff F, Slavin A, Akerman J 2010 Phys. Rev. Lett. 105 217204 DOI: 10.1103/PhysRevLett.95.237201
[28]
Slavin A, Tiberkevich V 2005 Phys. Rev. Lett. 95 237201 DOI: 10.1103/PhysRevLett.99.127204
[29]
Hansen U H, Gatzen M, Demidov V E, Demokritov S O 2007 Phys. Rev. Lett. 99 127204 DOI: 10.1103/PhysRevB.82.054432
[30]
Hoefer M A, Silva T J, Keller M W 2010 Phys. Rev. B 82 054432 DOI: 10.1016/j.physd.2012.02.003
[31]
Hoefer M A, Sommacal M 2012 Physica D 241 890 DOI: 10.1103/PhysRevB.85.214433
[32]
Hoefer M A, Sommacal M, Silva T J 2012 Phys. Rev. B 85 214433 DOI: 10.1126/science.1230155
[33]
Mohseni S M, Sani S R, Persson J, Nguyen T N A, Chung S, Pogoryelov Y, Muduli P K, Iacocca E, Eklund A, Dumas R K, Bonetti S, Deac A, Hoefer M A, Akerman J 2013 Science 339 1295 DOI: 10.1038/nmat3459
[34]
Demidov V E, Urazhdin S, Ulrichs H, Tiberkevich V, Slavin A, Baither D, Schmitz G, Demokritov S O 2012 Nat. Mater. 11 1028 DOI: 10.7498/aps.67.20180906
[35]
Han X F, Wan C H 2018 Acta Phys. Sin. 67 127201 in Chinese DOI: 10.1103/Phys..6.39
[36]
Hoffmann A 2013 Physics 6 39 DOI: 10.1103/PhysRevAppl..8.021001
[37]
Liu R H, Chen L N, Urazhdin S, Du Y W 2017 Phys. Rev. Appl. 8 021001 DOI: 10.1103/PhysRevB.100.104436
[38]
Chen L N, Zhou K Y, Urazhdin S, Jiang W C, Du Y W, Liu R H 2019 Phys. Rev. B 100 104436 DOI: 10.1103/PhysRevLett.102.187201
[39]
Nakamura K, Shimabukuro R, Fujiwara Y, Akiyama T, Ito T, Freeman A J 2009 Phys. Rev. Lett. 102 187201 DOI: 10.1038/nnano.2008.406
[40]
Maruyama T, Shiota Y, Nozaki T, Ohta K, Toda N, Mizuguchi M, Tulapurkar A A, Shinjo T, Shiraishi M, Mizukami S, Ando Y, Suzuki Y 2009 Nat. Nanotechnol. 4 158 DOI: 10.1038/nmat3130
[41]
Chiba D, Fukami S, Shimamura K, Ishiwata N, Kobayashi K, Ono T 2011 Nat. Mater. 10 853 DOI: 10.1038/nmat3171
[42]
Wang W G, Li M G, Hageman S, Chien C L 2012 Nat. Mater. 11 64 DOI: 10.1103/PhysRevB.89.220409
[43]
Liu R H, Lim W L, Urazhdin S 2014 Phys. Rev. B 89 220409 DOI: 10.1088/1674-1056/ab9439
[44]
Zheng Z Y, Zhang Y, Zhu D Q, Zhang K, Feng X Q, He Y, Chen L, Zhang Z Z, Liu D J, Zhang Y G, Amiri P K, Zhao W S 2020 Chin. Phys. B 29 078505 DOI: 10.1103/PhysRevLett.68.682
[45]
Daalderop G H, Kelly P J, den Broeder F J 1992 Phys. Rev. Lett. 68 682 DOI: 10.1109/TMAG.1975.1058782
[46]
Mcguire T R, Potter R I 1975 IEEE Transactions on Magnetics 11 1018 DOI: 10.1063/1.3680091
[47]
Bortolotti P, Dussaux A, Grollier J, Cros V, Fukushima A, Kubota H, Yakushiji K, Yuasa S, Ando K, Fert A 2012 Appl. Phys. Lett. 100 042408 DOI: 10.1063/1.4896634
[48]
Sharma R, Durrenfeld P, Iacocca E, Heinonen O G, Akerman J, Muduli P K 2014 Appl. Phys. Lett. 105 132404 DOI: 10.1103/PhysRevLett.100.017207
[49]
Kim J V, Tiberkevich V, Slavin A N 2008 Phys. Rev. Lett. 100 017207 DOI: 10.1103/PhysRevAppl..11.064038
[50]
Chen L N, Urazhdin S, Du Y W, Liu R H 2019 Phys. Rev. Appl. 11 064038 DOI: 10.1103/PhysRevAppl..13.024034
[51]
Chen L N, Urazhdin S, Zhou K Y, Du Y W, Liu R H 2020 Phys. Rev. Appl. 13 024034 DOI: 10.1038/ncomms4179
[52]
Demidov V E, Ulrichs H, Gurevich S V, Demokritov S O, Tiberkevich V S, Slavin A N, Zholud A, Urazhdin S 2014 Nat. Commun. 5 3179 DOI: 10.1038/nphys3927
[53]
Awad A A, Dürrenfeld P, Houshang A, Dvornik M, Iacocca E, Dumas R K, Åkerman J 2016 Nat. Phys. 13 292 DOI: 10.1038/ncomms15825
[54]
Lebrun R, Tsunegi S, Bortolotti P, Kubota H, Jenkins A S, Romera M, Yakushiji K, Fukushima A, Grollier J, Yuasa S, Cros V 2017 Nat. Commun. 8 15825 DOI: 10.1063/1.5115183
[55]
Jiang W C, Chen L N, Zhou K Y, Li L Y, Fu Q W, Du Y W, Liu R H 2019 Appl. Phys. Lett. 115 192403 DOI: 10.1038/srep44772
[56]
Vodenicarevic D, Locatelli N, Araujo F A, Grollier J, Querlioz D 2017 Scientific Reports 7 44772 DOI: 10.1063/1.4901027
[57]
Demidov V E, Urazhdin S, Zholud A, Sadovnikov A V, Demokritov S O 2014 Appl. Phys. Lett. 105 172410 DOI: 10.1038/ncomms10446
[58]
Demidov V E, Urazhdin S, Liu R, Divinskiy B, Telegin A, Demokritov S O 2016 Nat. Commun. 7 10446 DOI: 10.1109/TMAG.2014.2388196
[59]
Demidov V E, Demokritov S O 2015 IEEE Trans. Magnet. 51 1 DOI: 10.1007/s11433-019-1499-3
[60]
Zhang Y J, Zheng Q, Zhu X R, Yuan Z, Xia K 2020 Science China-Phys. Mechanics & Astronomy 63 277531 DOI: 10.1063/1.5143382
[61]
Zheng Q, Zhu X R, Mi Y Y, Yuan Z, Xia K 2020 Aip Adv. 10 025116 DOI: 10.1063/5.0001557
[62]
Liang X, Zhang X C, Xia J, Ezawa M, Zhao Y L, Zhao G P, Zhou Y 2020 Appl. Phys. Lett. 116 122402 DOI: 10.1103/PhysRevAppl..10.034063
[63]
Furuta T, Fujii K, Nakajima K, Tsunegi S, Kubota H, Suzuki Y, Miwa S 2018 Phys. Rev. Appl. 10 034063 DOI: 10.1126/science.1091277
[64]
Jaeger H, Haas H 2004 Science 304 78 DOI: 10.1109/PROC.5
[65]
Grollier J, Querlioz D, Stiles M D 2016 Proc. IEEE 104 2024 DOI: 10.1063/1.5042317
[66]
Fukami S, Ohno H 2018 J. Appl. Phys. 124 151904 DOI: 10.1038/nature23011
[67]
Torrejon J, Riou M, Araujo F A, Tsunegi S, Khalsa G, Querlioz D, Bortolotti P, Cros V, Yakushiji K, Fukushima A, Kubota H, Uasa S Y, Stiles M D, Grollier J 2017 Nature 547 428 DOI: 10.1038/s41467-017-02337-y
[68]
Du C, Cai F X, Zidan M A, Ma W, Lee S H, Lu W D 2017 Nat. Commun. 8 2204 DOI: 10.1038/s41586-018-0632-y
[69]
Romera M, Talatchian P, Tsunegi S, Araujo F A, Cros V, Bortolotti P, Trastoy J, Yakushiji K, Fukushima A, Kubota H, Yuasa S, Ernoult M, Vodenicarevic D, Hirtzlin T, Locatelli N, Querlioz D, Grollier J 2018 Nature 563 230 DOI: 10.1038/s41565-019-0593-9
[70]
Zahedinejad M, Awad A A, Muralidhar S, Khymyn R, Fulara H, Mazraati H, Dvornik M, Akerman J 2020 Nat. Nanotechnol. 15 47 DOI: 10.1038/s41928-019-0360-9
[71]
Grollier J, Querlioz D, Camsari K Y, Everschor-Sitte K, Fukami S, Stiles M D 2020 Nat. Electron. 3 360 DOI: 10.1103/PhysRevAppl..11.034015
[72]
Cai J L, Fang B, Zhang L K, Lv W X, Zhang B S, Zhou T J, Finocchio G, Zeng Z M 2019 Phys. Rev. Appl. 11 034015 DOI: 10.1063/1.5055860
[73]
Camsari K Y, Sutton B M, Datta S 2019 Appl. Phys. Rev. 6 011305 DOI: 10.1063/1.5055860
[74]
Zhang S, Luo S J, Xu N, Zou Q M, Song M, Yun J J, Luo Q, Guo Z, Li R F, Tian W C, Li X, Zhou H G, Chen H M, Zhang Y, Yang X F, Jiang W J, Shen K, Hong J M, Yuan Z, Xi L, Xia K, Salahuddin S, Dieny B, You L 2019 Adv. Electron. Mater. 5 1800782 DOI: 10.1002/aelm.201800782
[1] Diffusive field coupling-induced synchronization between neural circuits under energy balance
Ya Wang(王亚), Guoping Sun(孙国平), and Guodong Ren(任国栋). Chin. Phys. B, 2023, 32(4): 040504.
[2] Hopf bifurcation and phase synchronization in memristor-coupled Hindmarsh-Rose and FitzHugh-Nagumo neurons with two time delays
Zhan-Hong Guo(郭展宏), Zhi-Jun Li(李志军), Meng-Jiao Wang(王梦蛟), and Ming-Lin Ma(马铭磷). Chin. Phys. B, 2023, 32(3): 038701.
[3] Influence of coupling asymmetry on signal amplification in a three-node motif
Xiaoming Liang(梁晓明), Chao Fang(方超), Xiyun Zhang(张希昀), and Huaping Lü(吕华平). Chin. Phys. B, 2023, 32(1): 010504.
[4] Enhancement of spin-orbit torque efficiency by tailoring interfacial spin-orbit coupling in Pt-based magnetic multilayers
Wenqiang Wang(王文强), Gengkuan Zhu(朱耿宽), Kaiyuan Zhou(周恺元), Xiang Zhan(战翔), Zui Tao(陶醉), Qingwei Fu(付清为), Like Liang(梁力克), Zishuang Li(李子爽), Lina Chen(陈丽娜), Chunjie Yan(晏春杰), Haotian Li(李浩天), Tiejun Zhou(周铁军), and Ronghua Liu(刘荣华). Chin. Phys. B, 2022, 31(9): 097504.
[5] Power-law statistics of synchronous transition in inhibitory neuronal networks
Lei Tao(陶蕾) and Sheng-Jun Wang(王圣军). Chin. Phys. B, 2022, 31(8): 080505.
[6] Effect of astrocyte on synchronization of thermosensitive neuron-astrocyte minimum system
Yi-Xuan Shan(单仪萱), Hui-Lan Yang(杨惠兰), Hong-Bin Wang(王宏斌), Shuai Zhang(张帅), Ying Li(李颖), and Gui-Zhi Xu(徐桂芝). Chin. Phys. B, 2022, 31(8): 080507.
[7] Multi-target ranging using an optical reservoir computing approach in the laterally coupled semiconductor lasers with self-feedback
Dong-Zhou Zhong(钟东洲), Zhe Xu(徐喆), Ya-Lan Hu(胡亚兰), Ke-Ke Zhao(赵可可), Jin-Bo Zhang(张金波),Peng Hou(侯鹏), Wan-An Deng(邓万安), and Jiang-Tao Xi(习江涛). Chin. Phys. B, 2022, 31(7): 074205.
[8] Synchronization of nanowire-based spin Hall nano-oscillators
Biao Jiang(姜彪), Wen-Jun Zhang(张文君), Mehran Khan Alam, Shu-Yun Yu(于淑云), Guang-Bing Han(韩广兵), Guo-Lei Liu(刘国磊), Shi-Shen Yan(颜世申), and Shi-Shou Kang(康仕寿). Chin. Phys. B, 2022, 31(7): 077503.
[9] Synchronization in multilayer networks through different coupling mechanisms
Xiang Ling(凌翔), Bo Hua(华博), Ning Guo(郭宁), Kong-Jin Zhu(朱孔金), Jia-Jia Chen(陈佳佳), Chao-Yun Wu(吴超云), and Qing-Yi Hao(郝庆一). Chin. Phys. B, 2022, 31(4): 048901.
[10] Explosive synchronization: From synthetic to real-world networks
Atiyeh Bayani, Sajad Jafari, and Hamed Azarnoush. Chin. Phys. B, 2022, 31(2): 020504.
[11] Collective behavior of cortico-thalamic circuits: Logic gates as the thalamus and a dynamical neuronal network as the cortex
Alireza Bahramian, Sajjad Shaukat Jamal, Fatemeh Parastesh, Kartikeyan Rajagopal, and Sajad Jafari. Chin. Phys. B, 2022, 31(2): 028901.
[12] Measure synchronization in hybrid quantum-classical systems
Haibo Qiu(邱海波), Yuanjie Dong(董远杰), Huangli Zhang(张黄莉), and Jing Tian(田静). Chin. Phys. B, 2022, 31(12): 120503.
[13] Switching plasticity in compensated ferrimagnetic multilayers for neuromorphic computing
Weihao Li(李伟浩), Xiukai Lan(兰修凯), Xionghua Liu(刘雄华), Enze Zhang(张恩泽), Yongcheng Deng(邓永城), and Kaiyou Wang(王开友). Chin. Phys. B, 2022, 31(11): 117106.
[14] Finite-time complex projective synchronization of fractional-order complex-valued uncertain multi-link network and its image encryption application
Yong-Bing Hu(胡永兵), Xiao-Min Yang(杨晓敏), Da-Wei Ding(丁大为), and Zong-Li Yang(杨宗立). Chin. Phys. B, 2022, 31(11): 110501.
[15] Finite-time synchronization of uncertain fractional-order multi-weighted complex networks with external disturbances via adaptive quantized control
Hongwei Zhang(张红伟), Ran Cheng(程然), and Dawei Ding(丁大为). Chin. Phys. B, 2022, 31(10): 100504.
No Suggested Reading articles found!