Structural and dynamical mechanisms of a naturally occurring variant of the human prion protein in preventing prion conversion
Yiming Tang(唐一鸣), Yifei Yao(姚逸飞), and Guanghong Wei(韦广红)†
1Department of Physics, State Key Laboratory of Surface Physics and Key Laboratory for Computational Physical Science (Ministry of Education), and Multiscale Research Institute of Complex Systems, Fudan University, Shanghai 200433, China
Prion diseases are associated with the misfolding of the normal helical cellular form of prion protein (PrPC) into the β-sheet-rich scrapie form (PrPSc) and the subsequent aggregation of PrPSc into amyloid fibrils. Recent studies demonstrated that a naturally occurring variant V127 of human PrPC is intrinsically resistant to prion conversion and aggregation, and can completely prevent prion diseases. However, the underlying molecular mechanism remains elusive. Herein we perform multiple microsecond molecular dynamics simulations on both wildtype (WT) and V127 variant of human PrPC to understand at atomic level the protective effect of V127 variant. Our simulations show that G127V mutation not only increases the rigidity of the S2–H2 loop between strand-2 (S2) and helix-2 (H2), but also allosterically enhances the stability of the H2 C-terminal region. Interestingly, previous studies reported that animals with rigid S2–H2 loop usually do not develop prion diseases, and the increase in H2 C-terminal stability can prevent misfolding and oligomerization of prion protein. The allosteric paths from G/V127 to H2 C-terminal region are identified using dynamical network analyses. Moreover, community network analyses illustrate that G127V mutation enhances the global correlations and intra-molecular interactions of PrP, thus stabilizing the overall PrPC structure and inhibiting its conversion into PrPSc. This study provides mechanistic understanding of human V127 variant in preventing prion conversion which may be helpful for the rational design of potent anti-prion compounds.
* Project supported by the Key Program of the National Key Research and Development Program of China (Grant No. 2016YFA0501702) and the National Natural Science Foundation of China (Grant No. 11674065).
Cite this article:
Yiming Tang(唐一鸣), Yifei Yao(姚逸飞), and Guanghong Wei(韦广红)† Structural and dynamical mechanisms of a naturally occurring variant of the human prion protein in preventing prion conversion 2020 Chin. Phys. B 29 108710
Fig. 1.
Stability and rigidity of WT PrP and its V127 variant. (a) A snapshot of the human PrP structure. (b)–(c) PDF of RMSD values in four consecutive time windows of (b) WT systems and (c) G127V systems. (d) RMSF of each residue on WT and G127V averaging over the three individual simulations for each system. The error bars are calculated by computing independent values from each individual simulation and taking the maximums and minimums of those values. The two regions where RMSF of G127V is remarkably lower than that of WT are labeled (1) and (2).
Fig. 2.
Conformational characteristics of the S2–H2 loop. (a) Snapshots of the S2–H2 loop (residue 165–174) in three prion-resistant PrPs. The red and blue dashed boxes correspond to the two structural characteristics: a helix-like structure and a turn-like loop. (b) The Ramachandran plot of residue D167 in bank vole, elk, and horse PrPs. (c)–(f) Snapshots of the representative conformations of (c) the top four S2–H2 loop clusters in WT-1 MD run and of (c)–(e) the top one cluster in each G127V MD run. (g)–(h) PMF of D167 plotted as a function of the (Φ, Ψ) values in (g) WT and (h) G127V PrPs.
Fig. 3.
Influence of G127V mutation on the interactions in the vicinity of residue 127 and S2–H2 loop. (a), (c), (f) Time evolution of (a) contact number between G/V127 and P165, (c) number of H-bonds between residues 125–129 and residues 162–169, and (f) centroid distance between residue R164 and D178 charged sidechain groups, in WT-1 (blue line) and in G127V-1 (red line). (b), (d), (g) Statistical analysis using a combined trajectory of the last 1.0 μs in the three simulations of WT and G127V systems. (e) Time evolution of H-bond numbers between residues 125–129 and residues 162–169. Only residue pairs forming H-bonds in more than 1/4 of simulation time are shown. (h)–(i) Representative snapshots of the N-terminal region and the S2–H2 loop region of (h) WT system, and (i) G127V system. (j)–(k) Snapshots of the G127V showing (j) the E168-involved H-bonds, and (k) the R164-D178 salt bridge.
Fig. 4.
Allosteric paths from the mutation site (G/V127) to the C-terminal of H2 in WT and G127V systems. (a), (d) Optimal path from residue G/V127 to G195 in (a) WT PrP and (d) G127V. (b), (e) The correlation values of residue pairs forming the edges along (b) the G127–G195, and (e) the V127–G195 optimal paths. (c), (f) Percentage of optimal path length increase upon removal of each node of (c) WT and (f) G127V optimal paths.
Fig. 5.
Correlation and community network analysis of WT and V127 variant. (a)–(b) Inter-residue correlation matrices of (a) WT and (b) G127V systems. (c)–(d) Community networks of (c) WT and (d) G127V systems. Left panels: snapshots of the proteins colored by communities. Right panels: schematic diagrams of the community networks. Each circle represents a single community. The size of the circle and the width of the edges correspond respectively to the size of the community and the connectivity strength between two communities.
Will R G, Ironside J W, Zeidler M, Cousens S N, Estibeiro K, Alperovitch A, Poser S, Pocchiari M, Hofmar A, Smith P G 1996 Lancet 347 921 DOI: 10.1016/S0140-6736(96)91412-9
Lugaresi E, Medori R, Montagna P, Baruzzi A, Cortelli P, Lugaresi A, Tinuper P, Zucconi M, Gambetti P 1986 N. Engl. J. Med. 315 997 DOI: 10.1056/NEJM198610163151605
[8]
Medori R, Tritschler H-J, LeBlanc A, Villare F, Manetto V, Chen H Y, Xue R, Leal S, Montagna P, Cortelli P, Tinuper P, Avoni P, Mochi M, Baruzzi A, Hauw J J, Ott J, Lugaresi E, Autilio-Gambetti L, Gambetti P 1992 N. Engl. J. Med. 326 444 DOI: 10.1056/NEJM199202133260704
Tuite M F, Serio T R 2010 Nat. Rev. Mol. Cell Biol. 11 823 DOI: 10.1038/nrm3007
[17]
Frost B, Diamond M I 2010 Nat. Rev. Neurosci. 11 155 DOI: 10.1038/nrn2786
[18]
Nussbaum J M, Schilling S, Cynis H, Silva A, Swanson E, Wangsanut T, Tayler K, Wiltgen B, Hatami A, Rönicke R, Reymann K, Hutter-Paier B, Alexandru A, Jagla W, Graubner S, Glabe C G, Demuth H U, Bloom G S 2012 Nature 485 651 DOI: 10.1038/nature11060
Zahn R, Liu A, Lührs T, Riek R, Von Schroetter C, Garcia F L, Billeter M, Calzolai L, Wider G, Wüthrich K 2000 Proc. Natl. Acad. Sci. USA 97 145 DOI: 10.1073/pnas.97.1.145
[29]
Calzolai L, Lysek D A, Güntert P, Von Schroetter C, Riek R, Zahn R, Wüthrich K 2000 Proc. Natl. Acad. Sci. USA 97 8340 DOI: 10.1073/pnas.97.15.8340
[30]
Knaus K J, Morillas M, Swietnicki W, Malone M, Surewicz W K, Yee V C 2001 Nat. Struct. Biol. 8 770 DOI: 10.1038/nsb0901-770
[31]
Westergard L, Christensen H M, Harris D A 2007 Biochim. Biophys. Acta. (BBA)-Mol. Basis Dis. 1772 629 DOI: 10.1016/j.bbadis.2007.02.011
[32]
Provenzano L, Ryan Y, Hilton D A, Lyons-Rimmer J, Dave F, Maze E A, Adams C L, Rigby-Jones R, Ammoun S, Hanemann C O 2017 Oncogene 36 6132 DOI: 10.1038/onc.2017.200
Franzmann T M, Jahnel M, Pozniakovsky A, Mahamid J, Holehouse A S, Nüske E, Richter D, Baumeister W, Grill S W, Pappu R V, Hyman A A, Alberti S 2018 Science 359 6371 DOI: 10.1126/science.aao5654
[37]
Pan K M, Baldwin M, Nguyen J, Gasset M, Serban A, Groth D, Mehlhorn I, Huang Z, Fletterick R J, Cohen F E, Prusiner S B 1993 Proc. Natl. Acad. Sci. USA 90 10962 DOI: 10.1073/pnas.90.23.10962
Petersen R B, Parchi P, Richardson S L, Urig C B, Gambetti P 1996 J. Biol. Chem. 271 12661 DOI: 10.1074/jbc.271.21.12661
[45]
Zarranz J J, Digon A, Atarés B, Rodríguez-Martinez A B, Arce A, Carrera N, Fernández-Manchola I, Fernández-Martínez M, Fernández-Maiztegui C, Forcadas I, Galdos L, Gómez-Esteban J C, Ibáñez A, Lezcano E, De López Munain A, Martí-Massó J F, Mendibe M M, Urtasun M, Uterga J M, Saracibar N, Velasco F, De Pancorbo M M 2005 J. Neurol. Neurosurg. Psychiatry 76 1491 DOI: 10.1136/jnnp.2004.056606
[46]
Woulfe J, Kertesz A, Frohn I, Bauer S, George-Hyslop P S, Bergeron C 2005 Acta Neuropathol. 110 317 DOI: 10.1007/s00401-005-1054-0
[47]
Tartaglia M C, Thai J N, See T, Kuo A, Harbaugh R, Raudabaugh B, Cali I, Sattavat M, Sanchez H, DeArmond S J, Geschwind M D 2010 J. Neuropathol. Exp. Neurol. 69 1220 DOI: 10.1097/NEN.0b013e3181ffc39c
[48]
Palmer M S, Dryden A J, Hughes J T, Collinge J 1991 Nature 352 340 DOI: 10.1038/352340a0
[49]
Shibuya S, Higuchi J, Shin R W, Tateishi J, Kitamoto T 1998 Ann. Neurol. 43 826 DOI: 10.1002/ana.v43:6
[50]
Soldevila M, Calafell F, Andrés A M, Yagüe J, Helgason A, Stefánsson K, Bertranpetit J 2003 Hum. Mutat. 22 104 DOI: 10.1126/science.aao5654
[51]
Takayanagi M, Suzuki K, Nakamura T, Hirata K, Satoh K, Kitamoto T 2018 Rinsho Shinkeigaku 58 682 DOI: 10.5692/clinicalneurol.cn-001206
[52]
Mead S, Whitfield J, Poulter M, Shah P, Uphill J, Campbell T, Al-Dujaily H, Hummerich H, Beck J, Mein C A, Verzilli C, Whittaker J, Alpers M P, Collinge J 2009 N. Engl. J. Med. 361 2056 DOI: 10.1056/NEJMoa0809716
[53]
Asante E A, Smidak M, Grimshaw A, Houghton R, Tomlinson A, Jeelani A, Jakubcova T, Hamdan S, Richard-Londt A, Linehan J M, Brandner S, Alpers M, Whitfield J, Mead S, Wadsworth J D F, Collinge J 2015 Nature 522 478 DOI: 10.1038/nature14510
Barducci A, Chelli R, Procacci P, Schettino V, Gervasio F L, Parrinello M 2006 J. Am. Chem. Soc. 128 2705 DOI: 10.1021/ja057076l
[66]
Caldarulo E, Barducci A, Wüthrich K, Parrinello M 2017 Proc. Natl. Acad. Sci. USA 114 9617 DOI: 10.1073/pnas.1712155114
[67]
Huang D, Caflisch A 2015 J. Am. Chem. Soc. 137 2948 DOI: 10.1021/ja511568m
[68]
Avbelj M, Hafner-Bratkovič I, Jerala R 2011 Biochem. Biophys. Res. Commun. 413 521 DOI: 10.1016/j.bbrc.2011.08.125
[69]
Kurt T D, Aguilar-Calvo P, Jiang L, Rodriguez J A, Alderson N, Eisenberg D S, Sigurdson C J 2017 J. Biol. Chem. 292 19076 DOI: 10.1074/jbc.M117.794107
[70]
Sigurdson C J, Nilsson K P R, Hornemann S, Manco G, Fernández-Borges N, Schwarz P, Castilla J, Wüthrich K, Aguzzi A 2010 J. Clin. Invest. 120 2590 DOI: 10.1172/JCI42051
[71]
Christen B, Pérez D R, Hornemann S, Wüthrich K 2008 J. Mol. Biol. 383 306 DOI: 10.1016/j.jmb.2008.08.045
[72]
Gossert A D, Bonjour S, Lysek D A, Fiorito F, Wüthrich K 2005 Proc. Natl. Acad. Sci. USA 102 646 DOI: 10.1073/pnas.0409008102
Agarwal S, Döring K, Gierusz L A, Iyer P, Lane F M, Graham J F, Goldmann W, Pinheiro T J T, Gill A C 2015 Sci. Rep. 5 15528 DOI: 10.1038/srep15528
[76]
Kaneko K, Zulianello L, Scott M, Cooper C M, Wallace A C, James T L, Cohen F E, Prusiner S B 1997 Proc. Natl. Acad. Sci. USA 94 10069 DOI: 10.1073/pnas.94.19.10069
[77]
Knaus K J, Morillas M, Swietnicki W, Malone M, Surewicz W K, Yee V C 2001 Nat. Struct. Biol. 8 770 DOI: 10.1038/nsb0901-770
[78]
Bjorndahl T C, Zhou G P, Liu X, Perez-Pineiro R, Semenchenko V, Saleem F, Acharya S, Bujold A, Sobsey C A, Wishart D S 2011 Biochemistry 50 1162 DOI: 10.1021/bi101435c
[79]
Singh J, Kumar H, Sabareesan A T, Udgaonkar J B 2014 J. Am. Chem. Soc. 136 16704 DOI: 10.1021/ja510964t
[80]
Gower J C, Ross G J S 1969 Appl. Stat. 18 54 DOI: 10.2307/2346439
[81]
Huang J J, Li X N, Liu W L, Yuan H Y, Gao Y, Wang K, Tang B, Pang D W, Chen J, Liang Y 2020 J. Mol. Biol. 432 828 DOI: 10.1016/j.jmb.2019.11.020
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.