Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(10): 108901    DOI: 10.1088/1674-1056/aba27d
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Modeling and analysis of the ocean dynamic with Gaussian complex network

Xin Sun(孙鑫)1, Yongbo Yu(于勇波)1, Yuting Yang(杨玉婷)1, Junyu Dong(董军宇)1,2,†, Christian B\"ohm3, and Xueen Chen(陈学恩)4
1 Department of Computer Science and Technology, Ocean University of China, Qingdao 266000, China
2 Frontiers Science Center for Deep Ocean Multispheres and Earth System, Qingdao 266000, China
3 Institut für Informatik, Ludwig Maximilian University of Munich, Munich 80331-81929, Germany
4 College of Physical and Environmental Oceanography, Ocean University of China, Qingdao 266000, China
Abstract  

The techniques for oceanographic observation have made great progress in both space-time coverage and quality, which make the observation data present some characteristics of big data. We explore the essence of global ocean dynamic via constructing a complex network with regard to sea surface temperature. The global ocean is divided into discrete regions to represent the nodes of the network. To understand the ocean dynamic behavior, we introduce the Gaussian mixture models to describe the nodes as limit-cycle oscillators. The interacting dynamical oscillators form the complex network that simulates the ocean as a stochastic system. Gaussian probability matching is suggested to measure the behavior similarity of regions. Complex network statistical characteristics of the network are analyzed in terms of degree distribution, clustering coefficient and betweenness. Experimental results show a pronounced sensitivity of network characteristics to the climatic anomaly in the oceanic circulation. Particularly, the betweenness reveals the main pathways to transfer thermal energy of El Niño–Southern oscillation. Our works provide new insights into the physical processes of ocean dynamic, as well as climate changes and ocean anomalies.

Keywords:  complex networks      ocean dynamic      Gaussian mixture model      physical processes  
Received:  17 April 2020      Revised:  19 June 2020      Accepted manuscript online:  03 July 2020
PACS:  89.75.Fb (Structures and organization in complex systems)  
  05.45.Tp (Time series analysis)  
  64.60.aq (Networks)  
Corresponding Authors:  Corresponding author. E-mail: dongjunyu@ouc.edu.cn   
About author: 
†Corresponding author. E-mail: dongjunyu@ouc.edu.cn
* Project supported by the National Natural Science Foundation of China (Grant Nos. U1706218, 61971388, and L1824025).

Cite this article: 

Xin Sun(孙鑫), Yongbo Yu(于勇波), Yuting Yang(杨玉婷), Junyu Dong(董军宇)†, Christian B\"ohm, and Xueen Chen(陈学恩) Modeling and analysis of the ocean dynamic with Gaussian complex network 2020 Chin. Phys. B 29 108901

Fig. 1.  

Process of complex network modeling based on surface sea temperature (SST).

Fig. 2.  

Degree distribution of nodes in (left) SG-network (right) MG-network.

Fig. 3.  

Degree logD distributions with geographic locations in the global ocean: (a) SG-network, (b) MG-network.

Fig. 4.  

Degree distributions in the northern hemisphere.

Fig. 5.  

Clustering coefficient distribution of the network model at geographic location.

Fig. 6.  

Betweenness distribution of the network model at geographic location.

Fig. 7.  

Scatter plots of betweenness against degree of SG-network

Clustering coefficient Distance Diameter
La Niña period MG-network 0.136 2.083 4
SG-network 0.102 2.905 8
Normal period MG-network 0.302 1.98 3
SG-network 0.132 2.07 4
El Niño period} MG-network 0.1585 8189 6
SG-network 0.261 1.809 4
Table 1.  

Average clustering coefficient, distance and diameter for the networks constructed by Gaussian approach in three periods.

[1]
Zhang L, Huang S X, Shen C, Shi W L 2011 Chin. Phys. B 20 129201 DOI: 10.1088/1674-1056/20/12/129201
[2]
Shen X Y, Qing T, Li X F 2013 Chin. Phys. B 22 94213 DOI: 10.1088/1674-1056/22/9/094213
[3]
Chave A D, Arrott M, Farcas C, Farcas E, Krueger I, Meisinger M, Orcutt J A, Vernon F L, Peach C, and S Oscar Oceans May 11–14, 2009 Bremen, Germany 1
[4]
Liu Y j, Qiu M, Liu C, Guo Z W 2017 Pers. Ubiquitous Comput. 21 55 DOI: 10.1007/s00779-016-0980-2
[5]
Owens D, Best M, Guillemot E, Jenkyns R Oceans B 2010 May 24–27 2010 Sydney, Australia 1
[6]
Sun X, Chen C, Dong J, Liu D, Hu G 2020 Knowl.-Based Syst. 196 105824 DOI: 10.1016/j.knosys.2020.105824
[7]
Pradhan R, Aygun R S, Maskey M, Ramachandran R, Cecil D J 2017 IEEE Trans. Image Process. 27 692 DOI: 10.1109/TIP.2017.2766358
[8]
Havlin S, Kenett D Y, Jacob E B, Bunde A, Cohen R 2012 Eur. Phys. J. Spec. Top. 214 273 DOI: 10.1140/epjst/e2012-01695-x
[9]
Wu Y, Shang Y, Chen M et al. 2008 IEEE Trans. Circuits Syst. 214 1335 DOI: 10.1063/1.2939136
[10]
Tominski C, Donges J F, Nocke T 2011 15th International Conference on Information Visualisation July 13–15, 2011 London, UK 298 305 DOI: 10.1109/IV.2011.12
[11]
Donges J F, Zou Y, Marwan N, Kurths J 2009 Eur. Phys. J. Spec. Top. 174 157 DOI: 10.1140/epjst/e2009-01098-2
[12]
Charakopoulos A K, Katsouli G A, Karakasidis T E 2009 Physica A 495 436 DOI: 10.1016/j.physa.2017.12.027
[13]
Sun X, Song Z, Dong J, Yu Y, Plant C, Böhm C 2019 Thirty-Third AAAI Conference on Artificial Intelligence January 29–31, 2019 Hawaii, USA 5041 5048 DOI: 10.1609/aaai.v33i01.33015041
[14]
Steinhaeuser K, Chawla N V, Ganguly A R 2009 Proceedings of the Third International Workshop on Knowledge Discovery from Sensor Data June 28, 2009 Paris, France 23 31 DOI: 10.1145/1882471.1882476
[15]
Donges J F, Petrova I, Loew A, Marwan N, Kurths J 2015 Clim. Dynamics 45 2407 DOI: 10.1007/s00382-015-2479-3
[16]
Meng J, Fan J F, Ashkenazy Y, Havlin S 2017 Chaos: An Interdisciplinary J. Nonlinear Sci. 27 035807 DOI: 10.1063/1.4975766
[17]
Donges J F, Zou Y, Marwan N, Kurths J 2009 Eur. Phys. J. Special Topics 174 157 DOI: 10.1140/epjst/e2009-01098-2
[18]
Boers N, Bookhagen B, Marwan N, Kurths J, Marengo J 2013 Geophys. Res. Lett. 40 4386 DOI: 10.1002/grl.50681
[19]
Boers N, Bookhagen B, Barbosa H M J, Marwan N, Kurths J, Marengo J A 2014 Nat. Commun. 5 5199 DOI: 10.1038/ncomms6199
[20]
Josef L, Avi G, Mikhail I B, Armin B, Shlomo H, Hans J S 2014 Proc. Natl. Acad. Sci. USA 111 2064 DOI: 10.1073/pnas.1323058111
[21]
Tsonis A A, Swanson K L, Wang G 2008 J. Clim. 21 2990 DOI: 10.1175/2007JCLI1907.1
[22]
Tsonis A A, Roebber P J 2004 Phys. A: Stat. Mech. Its Appl. 333 497 DOI: 10.1016/j.physa.2003.10.045
[23]
Yamasaki K, Gozolchiani A, Havlin S 2008 Phys. Review Letters 100 228501 DOI: 10.1103/PhysRevLett.100.228501
[24]
Tsonis A A, Swanson K L 2008 Phys. Rev. Lett. 100 228502 DOI: 10.1103/PhysRevLett.100.228502
[25]
Iglesias G, Kale D C, Liu Y 2015 The 5th International Workshop on Climate Informatics September 24–25, 2015 Boulder, USA https://www2.cisl.ucar.edu/sites/default/files/29
[26]
Fan J F, J M, Chen X S, Ashkenazy Y, Havlin S 2016 Sci. Chin. Phys. Mech. Astron. 60 010531 DOI: 10.1007/s11433-016-0362-2
[27]
Ford J D, Tilleard S E, Lea B F, Araos M, Biesbroek R, Lesnikowski A C, MacDonald G K, Hsu A, Chen C, Bizikova L 2016 Proc. Natl. Acad. Sci. USA 113 10729 DOI: 10.1073/pnas.1614023113
[28]
Wang Y H, Shen X R, Yang S Q, Gao Z K 2020 Europhys. Lett. 128 60005 DOI: 10.1209/0295-5075/128/60005
[29]
Feng Q Y, Henk A D 2017 Chaos: An Interdisciplinary J. Nonlinear Sci. 27 035801 DOI: 10.1063/1.4971784
[30]
Wiedermann M, Radebach A, Donges J F, Kurths J, Donner R V 2016 Geophys. Res. Lett. 43 7176 DOI: 10.1002/2016GL069119
[31]
Tsonis A A, Swanson K L, Roebber P J 2006 Bull. Am. Meteorological Soc. 87 585 DOI: 10.1175/BAMS-87-5-585
[32]
Zerenner T, Friederichs P, Lehnertz K, Hense A 2014 Chaos: An Interdisciplinary J. Nonlinear Sci. 24 023103 DOI: 10.1063/1.4870402
[33]
Zhe J, Li X F, Zhou Y S, Gao S T 2012 Chin. Phys. B 21 054215 DOI: 10.1088/1674-1056/21/5/054215
[34]
Smith N R 2000 Adv. Space Res. 25 1089 DOI: 10.1016/S0273-1177(99)00868-6
[35]
Bohm C, Pryakhin A, Schubert M 2006 Proceedings of the 22nd International Conference on Data Engineering April 3–7, 2006 Atlanta, GA, USA 9 DOI: 10.1109/ICDE.2006.159
[36]
Freeman L C 1978 Soc. Netw. 1 215 DOI: 10.1016/0378-8733(78)90021-7
[37]
Duncan O D 1968 Am. Sociological Rev. 33 457 DOI: 10.2307/2091921
[38]
Huang J P, Kaz H, Amir S 1998 Geophys. Res. Lett. 25 2707 DOI: 10.1029/98GL01936
[39]
Fronczak A, Fronczak P, Hołyst J A 2007 Phys. Rev. E 76 061106 DOI: 10.1103/PhysRevE.76.061106
[1] Analysis of cut vertex in the control of complex networks
Jie Zhou(周洁), Cheng Yuan(袁诚), Zu-Yu Qian(钱祖燏), Bing-Hong Wang(汪秉宏), and Sen Nie(聂森). Chin. Phys. B, 2023, 32(2): 028902.
[2] Vertex centrality of complex networks based on joint nonnegative matrix factorization and graph embedding
Pengli Lu(卢鹏丽) and Wei Chen(陈玮). Chin. Phys. B, 2023, 32(1): 018903.
[3] Characteristics of vapor based on complex networks in China
Ai-Xia Feng(冯爱霞), Qi-Guang Wang(王启光), Shi-Xuan Zhang(张世轩), Takeshi Enomoto(榎本刚), Zhi-Qiang Gong(龚志强), Ying-Ying Hu(胡莹莹), and Guo-Lin Feng(封国林). Chin. Phys. B, 2022, 31(4): 049201.
[4] Robust H state estimation for a class of complex networks with dynamic event-triggered scheme against hybrid attacks
Yahan Deng(邓雅瀚), Zhongkai Mo(莫中凯), and Hongqian Lu(陆宏谦). Chin. Phys. B, 2022, 31(2): 020503.
[5] Finite-time synchronization of uncertain fractional-order multi-weighted complex networks with external disturbances via adaptive quantized control
Hongwei Zhang(张红伟), Ran Cheng(程然), and Dawei Ding(丁大为). Chin. Phys. B, 2022, 31(10): 100504.
[6] LCH: A local clustering H-index centrality measure for identifying and ranking influential nodes in complex networks
Gui-Qiong Xu(徐桂琼), Lei Meng(孟蕾), Deng-Qin Tu(涂登琴), and Ping-Le Yang(杨平乐). Chin. Phys. B, 2021, 30(8): 088901.
[7] Complex network perspective on modelling chaotic systems via machine learning
Tong-Feng Weng(翁同峰), Xin-Xin Cao(曹欣欣), and Hui-Jie Yang(杨会杰). Chin. Phys. B, 2021, 30(6): 060506.
[8] Exploring individuals' effective preventive measures against epidemics through reinforcement learning
Ya-Peng Cui(崔亚鹏), Shun-Jiang Ni (倪顺江), and Shi-Fei Shen(申世飞). Chin. Phys. B, 2021, 30(4): 048901.
[9] Influential nodes identification in complex networks based on global and local information
Yuan-Zhi Yang(杨远志), Min Hu(胡敏), Tai-Yu Huang(黄泰愚). Chin. Phys. B, 2020, 29(8): 088903.
[10] Identifying influential spreaders in complex networks based on entropy weight method and gravity law
Xiao-Li Yan(闫小丽), Ya-Peng Cui(崔亚鹏), Shun-Jiang Ni(倪顺江). Chin. Phys. B, 2020, 29(4): 048902.
[11] Pyramid scheme model for consumption rebate frauds
Yong Shi(石勇), Bo Li(李博), Wen Long(龙文). Chin. Phys. B, 2019, 28(7): 078901.
[12] Theoretical analyses of stock correlations affected by subprime crisis and total assets: Network properties and corresponding physical mechanisms
Shi-Zhao Zhu(朱世钊), Yu-Qing Wang(王玉青), Bing-Hong Wang(汪秉宏). Chin. Phys. B, 2019, 28(10): 108901.
[13] Coordinated chaos control of urban expressway based on synchronization of complex networks
Ming-bao Pang(庞明宝), Yu-man Huang(黄玉满). Chin. Phys. B, 2018, 27(11): 118902.
[14] Detecting overlapping communities based on vital nodes in complex networks
Xingyuan Wang(王兴元), Yu Wang(王宇), Xiaomeng Qin(秦小蒙), Rui Li(李睿), Justine Eustace. Chin. Phys. B, 2018, 27(10): 100504.
[15] Dominant phase-advanced driving analysis of self-sustained oscillations in biological networks
Zhi-gang Zheng(郑志刚), Yu Qian(钱郁). Chin. Phys. B, 2018, 27(1): 018901.
No Suggested Reading articles found!