Theoretical investigation of halide perovskites for solar cell and optoelectronic applications
Jingxiu Yang(杨竞秀)1,3, Peng Zhang(张鹏)2,3, Jianping Wang(王建平)3, and Su-Huai Wei(魏苏淮)3,†
1School of Materials Science and Engineering, Jilin Jianzhu University, Changchun 130118, China 2College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China 3Beijing Computational Science Research Center, Beijing 100193, China
The solar cell based on organic-inorganic hybrid halide perovskite is progressing amazingly fast in last decade owing to the robust experimental and theoretical investigations. First-principles calculation is one of the crucial ways to understand the nature of the materials and is practically helpful to the development and application of perovskite solar cells. Here, we briefly review the progress of theoretical studies we made in the last few years on the modification of electronic structures of perovskites by varying the composition, configuration, and structure, and the new understandings into the defect properties of halide perovskites for solar cell and optoelectronic applications. These understandings are foundations and new starting points for future investigations. We hope the experience and inspiration gained from these studies encourage more theoretical explorations for new functional perovskite-based materials.
* Project supported by the National Key Research and Development Program of China (Grant No. 2016YFB0700700), the National Natural Science Foundation of China (Grant Nos. 51672023, 11634003, and U1930402), and the Creative Talents Plan in CPSF, China (Grant No. BX2018033).
Cite this article:
Jingxiu Yang(杨竞秀), Peng Zhang(张鹏), Jianping Wang(王建平), and Su-Huai Wei(魏苏淮)† Theoretical investigation of halide perovskites for solar cell and optoelectronic applications 2020 Chin. Phys. B 29 108401
Fig. 1.
The crystal structure of (a) α phase MAPbI3, (b) partial charge density of the CBM, (c) partial charge density of the VBM, (d) band structure, (e) density of states (DOS) and partial DOS of MAPbI3. (f) Schematic optical absorption of Si, GaAs, and halide perovskites. Modified with permission from Ref. [17].
Fig. 2.
The formation energies (a) and the transition energy levels (b) of intrinsic point defects in MAPbI3 under the condition of different chemical potentials. Defects with much higher formation energies are displayed as dashed lines. Zero in energy is referred to the VBM. Modified with permission from Refs. [17, 23].
Fig. 3.
Correlations between tolerance factor and crystal structure of perovskite materials. Reprinted with permission from Ref. [44].
Fig. 4.
(a) Variations of volumes, formation energies (per halogen atom), and band gaps of the mixed halide alloys CsPb(X1 – xYx)3 (X, Y = I, Br, Cl) by SQS calculation. The solid lines are fitted by calculated results of SQS at nine different concentrations (fitted points are not shown for clarity). The triangles represent the stable ordered structures at x = 1/3. For band gaps, the available experimental data are given (red cross marks are data from Ref. [71], the red plus marks are data from Ref. [58], and the green star marks are date from Ref. [63]). (b) The contributions of strain energy and Coulomb energy in the alloy. (c) Particularly stable mixed-halide structures for CsPbX2Y1 (X, Y = I, Br, Cl; the atomic size of X is larger than Y). Reprinted with permission from Ref. [45].
Fig. 5.
(a) Four common structures for ABX3 compounds as denoted. (b) Screening progress. (c) Calculated optical absorption coefficients and conversion efficiencies of six types of perovskites, MAPbI3, and GaAs. Reprinted with permission from Ref. [46].
Fig. 6.
(a) Schematic idea of atomic transmutation and candidate perovskites for materials screening. (b) Energies of Cs2AgBiCl6 with different arrangements of AgCl6 (in gray) + BiCl6 (in blue). The energy of the lowest configuration F is set to zero. (c) Materials screening process by considering the properties relevant to photovoltaic performance, such as decomposition enthalpy (Δ H), band gap, effective masses ( , ), and exciton binding energy (Δ Eb). The red squares mean the materials passing the screening (selected) and the green ones mean not passing (abandoned). The optimal nontoxic perovskites satisfying all the criterions are marked with red checks. (d) The Δ H corresponding to different decomposition pathways for selected . Reprinted with permission from Ref. [42].
Fig. 7.
Calculated band structures for (a) CsMgCl3, (b) Cs2Mg2Cl6, (c) Cs2NaInCl6, (d) Cs2AgInCl6, (e) Cs2In+In3+Cl6, (f) Cs2NaBiCl6, (g) Cs2AgBiCl6, and (h) Cs2InBiCl6. The s, p, and d orbital components of the bands are represented as red/light blue, green/dark blue, and pink spheres, respectively. All the bands are aligned with respect to the Cs 1s core level. The dashed lines are at the middle of the band gaps. Reprinted with permission from Ref. [82].
Fig. 8.
(a) The band structures of the ordered and fully disordered Cs2AgBiBr6. The red dots represent the band edge states with the spectral weight over 50%. (b) The calculated optical absorption coefficients α (cm−1) of the fully ordered (black), partial disordered (blue), and fully disordered (red) Cs2AgBiBr6. (c) The Monte–Carlo simulation of the excess energy and (d) the corresponding averaged atomic correlation functions of pairs up to the mth neighbor (Π2m) as a function of temperature. Modification with permission from Ref. [83].
Fig. 9.
The schematic idea to stablize the disordered phase by introducing extra electrons. Modification with permission from Ref. [83].
Fig. 10.
(a) Top and side views of bulk orthorhombic CsPbBr3, CsBr-terminated and PbBr2-terminated triple-layer (L3) 2D orthorhombic CsPbBr3, respectively. The structures of the monolayer (L1) and double-layers (L2) are indicated. (b) Formation energies (eV/f.u.) of 2D orthorhombic CsPbBr3 (top) and orthorhombic MAPbI3 (bottom). Relaxed AX-terminated slabs (squares) and PbX2-terminated slabs (triangles) are presented for three different thicknesses, i.e., L1, L2, and L3. The symbols are connected by lines for a better view. The formation energy of bulk APbX3 is indicated by a horizontal dashed line. Reprinted with permission from Ref. [107].
Fig. 11.
(a) Representative examples of two classes of structural families for solar cell absorbers of tetrahedral coordination structure and octahedral coordination structure. Spinel structure can be considered as the mixing of tetrahedral and octahedral building blocks but keep high crystal symmetry. (b) The calculated optical absorption spectrum and the spectroscopic limited maximum efficiency (SLME) for 10 spinel compounds MgIn2Se4, ZnSc2Se4, ZnY2Se4, CdSc2Se4, CdY2Se4, HgAl2Se4, HgIn2S4, CdIn2Se4, HgSc2S4, and HgY2S4, in comparison to typical solar cell absorbers GaAs and CH3NH2PbI3. Five compounds with inferior performance (MgIn2Se4, ZnSc2Se4, ZnY2Se4, CdSc2Se4, and CdY2Se4) have been shaded. The orbital character of VBM and CBM for three selected compounds, HgAl2Se4, ZnSc2Se4, and CH3NH2PbI3. The dipole-allowed intra-atomic transitions are indicated. Reprinted with permission from Ref. [108].
Fig. 12.
(a) The schematic illustration of DX center in tetragonal semiconductor. The local structures of the host and α+, α–, and DY– defect states and the calculated defect formation energy of BiPb in (b) Bi-doped MAPbBr3 and (c) Bi-doped MAPbI3 as a function of Fermi energy EF under the anion-rich/Pb-poor condition. The numbers indicate the obtained bond lengths for the full lines or distances for the dotted lines of the broken bonds. (d) The alignment of the band edges of MAPbI3 and MAPbBr3 and the relative single electron energy levels of α– and DY– states. The red lines represent the stable states, while the grey lines represent the metastable states. The numbers in brackets represent the projected p orbital percentage of (anion/cation). Modification with permission from Refs. [29, 130].
Fig. 13.
(a) Schematic diagram of energy levels of the Bi-doped MAPbBr3 crystal in dark. (b) Schematic representation of the emergence of DX-like (DY) defect levels under light illumination. Also shown are the dynamic photocarrier generation and recombination processes that lead to the negative photoconductivity. (c) Negative photoconductivity curve corresponding to the transitions taking place relevant to DY center under light. (d) Schematic plot of formation energies of a shallow donor BiPb (α+) and DY center in MAPbBr3 as functions of the Fermi level (ϵf). (e) Atomic configuration of the DY center in Bi-doped MAPbBr3. (f) The transition of Bi-doped MAPbBr3 from the metastable α– state to the stable DY– state. Modification with permission from Refs. [29, 120].
Fig. 14.
(a) Schematic illustration of normal band structure for conventional n-type TCOs such as In2O3 and inverted band structure for p-type TCs. The black dashed line indicates the position of Fermi level, while the green dotted lines present the doping-limit energy level. (b) Interband (T1) and intraband (T2) optical transitions in p-type TCs. (c) Band structures of CsPbCl3 calculated by HSE06 and GW+SOC methods. (d) Calculated formation energies for various intrinsic defects, two defect complexes, and three extrinsic defects (KPb, NaPb, and AgPb) in CsPbCl3, under both the Pb-rich and Pb-poor conditions. (e) Decomposition energies (Δ Hd) of 27 IMHPs. (f) Band gaps of 10 stable IMHPs, calculated with GW+SOC method. Modification with permission from Ref. [121].
Zhou H Chen Q Li G Luo S Song T B Duan H S Hong Z You J Liu Y Yang Y 2014 Science 345 542 DOI: 10.1126/science.1254050
[11]
Saliba M Matsui T Domanski K Seo J Y Ummadisingu A Zakeeruddin S M Correa-Baena J-P Tress W R Abate A Hagfeldt A 2016 Science 354 206 DOI: 10.1126/science.aah5557
[12]
Yang W S Park B W Jung E H Jeon N J Kim Y C Lee D U Shin S S Seo J Kim E K Noh J H 2017 Science 356 1376 DOI: 10.1126/science.aan2301
[13]
Jeon N J Na H Jung E H Yang T Y Lee Y G Kim G Shin H W Seok S I Lee J Seo J 2018 Nat. Energy 3 682 DOI: 10.1038/s41560-018-0200-6
[14]
Jiang Q Zhao Y Zhang X Yang X Chen Y Chu Z Ye Q Li X Yin Z You J 2019 Nat. Photonics 13 460 DOI: 10.1038/s41566-019-0398-2
[15]
Jung E H Jeon N J Park E Y Moon C S Shin T J Yang T-Y Noh J H Seo J 2019 Nature 567 511 DOI: 10.1038/s41586-019-1036-3
Yin W J Yang J H Kang J Yan Y Wei S H 2015 J. Mater. Chem. A 3 8926 DOI: 10.1039/C4TA05033A
[18]
De Wolf S Holovsky J Moon S J Löper P Niesen B Ledinsky M Haug F J Yum J H Ballif C 2014 J. Phys. Chem. Lett. 5 1035 DOI: 10.1021/jz500279b
[19]
D’innocenzo V Grancini G Alcocer M J Kandada A R S Stranks S D Lee M M Lanzani G Snaith H J Petrozza A 2014 Nat. Commun. 5 1 DOI: 10.1038/ncomms4586(2014)
[20]
Wehrenfennig C Eperon G E Johnston M B Snaith H J Herz L M 2014 Adv. Mater. 26 1584 DOI: 10.1002/adma.201305172
Zhang X Shen J X Van de Walle C G 2019 Adv. Energy Mater.
[23]
Yin W J Shi T Yan Y 2014 Appl. Phys. Lett. 104 063903 DOI: 10.1063/1.4864778
[24]
Walsh A Scanlon D O Chen S Gong X Wei S H 2015 Angew. Chem., Int. Ed. 54 1791 DOI: 10.1002/anie.201409740
[25]
Yin W J Shi T Yan Y 2014 Advanced Materials 26 4653 DOI: 10.1002/adma.v26.27
[26]
Wang Q Shao Y Xie H Lyu L Liu X Gao Y Huang J 2014 Appl. Phys. Lett. 105 163508 DOI: 10.1063/1.4899051
[27]
Agiorgousis M L Sun Y Y Zeng H Zhang S 2014 J Am Chem Soc 136 14570 DOI: 10.1021/ja5079305
[28]
Meggiolaro D Motti S G Mosconi E Barker A J Ball J Perini C A R Deschler F Petrozza A De Angelis F 2018 Energy Environ. Sci. 11 702 DOI: 10.1039/C8EE00124C
[29]
Li J L Yang J Wu T Wei S H 2019 J. Mater. Chem. C 7 4230 DOI: 10.1039/C8TC06222F
[30]
Shi Z Guo J Chen Y Li Q Pan Y Zhang H Xia Y Huang W 2017 Adv. Mater. 29 1605005 DOI: 10.1002/adma.201605005
Niu G Li W Meng F Wang L Dong H Qiu Y 2014 J. Mater. Chem. A 2 705 DOI: 10.1039/C3TA13606J
[33]
Conings B Drijkoningen J Gauquelin N Babayigit A D’Haen J D’Olieslaeger L Ethirajan A Verbeeck J Manca J Mosconi E Angelis F D Boyen H G 2015 Adv. Energy Mater. 5 1500477 DOI: 10.1002/aenm.201500477
[34]
Zhang Y Y Chen S Xu P Xiang H Gong X G Walsh A Wei S-H 2018 Chin. Phys. Lett. 35 036104 DOI: 10.1088/0256-307X/35/3/036104
[35]
Li C Lu X Ding W Feng L Gao Y Guo Z 2008 Acta Crystallogr., Sect. B: Struct. Sci. 64 702 DOI: 10.1107/S0108768108032734
[36]
Marshall K Walker M Walton R Hatton R 2016 Nat. Energy 1 1 DOI: 10.1038/ng0492-1
[37]
Hao F Stoumpos C C Cao D H Chang R P Kanatzidis M G 2014 Nat. Photonics 8 489 DOI: 10.1038/nphoton.2014.82
[38]
Gu S Lin R Han Q Gao Y Tan H Zhu J 2020 Adv. Mater. 32 1907392 DOI: 10.1002/adma.201907392
[39]
Kamarudin M A Hirotani D Wang Z Hamada K Nishimura K Shen Q Toyoda T Iikubo S Minemoto T Yoshino K 2019 J. Phys. Chem. Lett. 10 5277 DOI: 10.1021/acs.jpclett.9b02024
[40]
Tavakoli M M Zakeeruddin S M Grätzel M Fan Z 2018 Adv. Mater. 30 1705998 DOI: 10.1002/adma.201705998
[41]
Lin R Xiao K Qin Z Han Q Zhang C Wei M Saidaminov M I Gao Y Xu J Xiao M 2019 Nat. Energy 4 864 DOI: 10.1038/s41560-019-0466-3
[42]
Zhao X G Yang J H Fu Y Yang D Xu Q Yu L Wei S H Zhang L 2017 J Am Chem Soc 139 2630 DOI: 10.1021/jacs.6b09645
Saliba M Matsui T Seo J Y Domanski K Correa-Baena J P Nazeeruddin M K Zakeeruddin S M Tress W Abate A Hagfeldt A 2016 Energy Environ. Sci. 9 1989 DOI: 10.1039/C5EE03874J
Tan H Jain A Voznyy O Lan X De Arquer F P G Fan J Z Quintero-Bermudez R Yuan M Zhang B Zhao Y 2017 Science 355 722 DOI: 10.1126/science.aai9081
[54]
Saidaminov M I Williams K Wei M Johnston A Quintero-Bermudez R Vafaie M Pina J M Proppe A H Hou Y Walters G 2020 Nat. Mater. 19 412 DOI: 10.1038/s41563-019-0602-2
Abdollahi Nejand B Hossain I M Jakoby M Moghadamzadeh S Abzieher T Gharibzadeh S Schwenzer J A Nazari P Schackmar F Hauschild D 2020 Adv. Energy Mater. 10 1902583 DOI: 10.1002/aenm.v10.5
[57]
Colella S Mosconi E Fedeli P Listorti A Gazza F Orlandi F Ferro P Besagni T Rizzo A Calestani G 2013 Chem. Mater. 25 4613 DOI: 10.1021/cm402919x
[58]
Noh J H Im S H Heo J H Mandal T N Seok S I 2013 Nano Lett. 13 1764 DOI: 10.1021/nl400349b
[59]
Edri E Kirmayer S Henning A Mukhopadhyay S Gartsman K Rosenwaks Y Hodes G Cahen D 2014 Nano Lett. 14 1000 DOI: 10.1021/nl404454h
[60]
Stranks S D Eperon G E Grancini G Menelaou C Alcocer M J Leijtens T Herz L M Petrozza A Snaith H J 2013 Science 342 341 DOI: 10.1126/science.1243982
[61]
Edri E Kirmayer S Cahen D Hodes G 2013 J. Phys. Chem. Lett. 4 897 DOI: 10.1021/jz400348q
[62]
Edri E Kirmayer S Kulbak M Hodes G Cahen D 2014 J. Phys. Chem. Lett. 5 429 DOI: 10.1021/jz402706q
[63]
Suarez B Gonzalez-Pedro V Ripolles T S Sanchez R S Otero L Mora-Sero I 2014 J. Phys. Chem. Lett. 5 1628 DOI: 10.1021/jz5006797
Beal R E Slotcavage D J Leijtens T Bowring A R Belisle R A Nguyen W H Burkhard G F Hoke E T McGehee M D 2016 J. Phys. Chem. Lett. 7 746 DOI: 10.1021/acs.jpclett.6b00002
[66]
Ono L K Juarez-Perez E J Qi Y 2017 ACS Appl. Mater. Interfaces 9 30197 DOI: 10.1021/acsami.7b06001
Righetto M Meggiolaro D Rizzo A Sorrentino R He Z Meneghesso G Sum T C Gatti T Lamberti F 2020 Prog. Mater. Sci. 110 100639 DOI: 10.1016/j.pmatsci.2020.100639
[69]
McMeekin D P Sadoughi G Rehman W Eperon G E Saliba M Hörantner M T Haghighirad A Sakai N Korte L Rech B 2016 Science 351 151 DOI: 10.1126/science.aad5845
[70]
Han Y Zhao H Duan C Yang S Yang Z Liu Z Liu S 2020 Adv. Funct. Mater. 30 1909972 DOI: 10.1023/A:1016584519829
Perera S Hui H Zhao C Xue H Sun F Deng C Gross N Milleville C Xu X Watson D F Weinstein B Sun Y-Y Zhang S Zeng H 2016 Nano Energy 22 129 DOI: 10.1021/nl504046x
[73]
Sun Y Y Agiorgousis M L Zhang P Zhang S 2015 Nano Lett. 15 581 DOI: 10.1021/jacs.7b11332
Xiao Z Du K-Z Meng W Wang J Mitzi D B Yan Y 2017 J. Am. Chem. Soc. 139 6054 DOI: 10.1021/ja508464w
[85]
Lee B Stoumpos C C Zhou N Hao F Malliakas C Yeh C Y Marks T J Kanatzidis M G Chang R P 2014 J. Am. Chem. Soc. 136 15379 DOI: 10.1039/C5CP03102H
[86]
Xiao Z Zhou Y Hosono H Kamiya T 2015 Phys. Chem. Chem. Phys. 17 18900 DOI: 10.1021/jacs.6b03207
[87]
Maughan A E Ganose A M Bordelon M M Miller E M Scanlon D O Neilson J R 2016 J. Am. Chem. Soc. 138 8453 DOI: 10.1021/acs.chemmater.6b00433
[88]
Saparov B Sun J P Meng W Xiao Z Duan H S Gunawan O Shin D Hill I G Yan Y Mitzi D B 2016 Chem. Mater. 28 2315 DOI: 10.1021/acs.jpclett.6b01041
[89]
Filip M R Hillman S Haghighirad A A Snaith H J Giustino F 2016 J. Phys. Chem. Lett. 7 2579 DOI: 10.1021/acs.chemmater.5b04231
[90]
McClure E T Ball M R Windl W Woodward P M 2016 Chem. Mater. 28 1348 DOI: 10.1021/jacs.5b13294
[91]
Slavney A H Hu T Lindenberg A M Karunadasa H I 2016 J. Am. Chem. Soc. 138 2138 DOI: 10.1021/acs.jpclett.6b00376
[92]
Volonakis G Filip M R Haghighirad A A Sakai N Wenger B Snaith H J Giustino F 2016 J. Phys. Chem. Lett. 7 1254 DOI: 10.1021/acs.jpclett.6b02682
[93]
Volonakis G Haghighirad A A Milot R L Sio W H Filip M R Wenger B Johnston M B Herz L M Snaith H J Giustino F 2017 J. Phys. Chem. Lett. 8 772 DOI: 10.1021/jacs.7b02120
[94]
Zhao X G Yang D Sun Y Li T Zhang L Yu L Zunger A 2017 J. Am. Chem. Soc. 139 6718 DOI: 10.1038/s41566-017-0012-4
[95]
Pan W Wu H Luo J Deng Z Ge C Chen C Jiang X Yin W J Niu G Zhu L 2017 Nat. Photonics 11 726 DOI: 10.1021/acsphotonics.7b00837
[96]
Luo J Li S Wu H Zhou Y Li Y Liu J Li J Li K Yi F Niu G Tang J 2018 ACS Photonics 5 398 DOI: 10.1023/A:1009430530367
[97]
da Fonseca R Sosman L Tavares A D Bordallo H 2000 J. Fluoresc. 10 375 DOI: 10.1103/PhysRevB.34.6647
Deng T Song E Zhou Y Wang L Zhang Q 2017 J. Mater. Chem. C 5 12422 DOI: 10.1002/adfm.v28.29
[102]
Tan Z Li J Zhang C Li Z Hu Q Xiao Z Kamiya T Hosono H Niu G Lifshitz E 2018 Adv. Funct. Mater. 28 1801131
[103]
Luo J Wang X Li S Liu J Guo Y Niu G Yao L Fu Y Gao L Dong Q Zhao C Leng M Ma F Liang W Wang L Jin S Han J Zhang L Etheridge J Wang J Yan Y Sargent E H Tang J 2018 Nature 563 541 DOI: 10.1038/s41586-018-0691-0
[104]
Slavney A H Hu T Lindenberg A M Karunadasa H I 2016 J Am Chem Soc 138 2138 DOI: 10.1021/jacs.5b13294
Ji F Klarbring J Wang F Ning W Wang L Yin C Figueroa J S M Christensen C K Etter M Ederth T Sun L Simak S I Abrikosov I A Gao F 2020 Angew. Chem., Int. Ed. 59 15191 DOI: 10.1002/anie.v59.35
[107]
Yang Y Gao F Gao S Wei S-H 2018 J. Mater. Chem. A 6 14949 DOI: 10.1039/C8TA01496E
Smith I C Hoke E T Solis-Ibarra D McGehee M D Karunadasa H I 2014 Angew. Chem., Int. Ed. 53 11232 DOI: 10.1002/anie.201406466
[110]
Quan L N Yuan M Comin R Voznyy O Beauregard E M Hoogland S Buin A Kirmani A R Zhao K Amassian A 2016 J. Am. Chem. Soc. 138 2649 DOI: 10.1021/jacs.5b11740
[111]
Tsai H Nie W Blancon J C Stoumpos C C Asadpour R Harutyunyan B Neukirch A J Verduzco R Crochet J J Tretiak S 2016 Nature 536 312 DOI: 10.1038/nature18306
[112]
Liu J Xue Y Wang Z Xu Z Q Zheng C Weber B Song J Wang Y Lu Y Zhang Y 2016 ACS Nano 10 3536 DOI: 10.1021/acsnano.5b07791
Abdelhady A L Saidaminov M I Murali B Adinolfi V Voznyy O Katsiev K Alarousu E Comin R Dursun I Sinatra L 2016 J. Phys. Chem. Lett. 7 295 DOI: 10.1021/acs.jpclett.5b02681
[124]
Yamada Y Hoyano M Akashi R Oto K Kanemitsu Y 2017 J. Phys. Chem. Lett. 8 5798 DOI: 10.1021/acs.jpclett.7b02508
[125]
Nayak P K Sendner M Wenger B Wang Z Sharma K Ramadan A J Lovrinčić R Pucci A Madhu P Snaith H J 2018 J. Am. Chem. Soc. 140 574 DOI: 10.1021/jacs.7b11125
Ulatowski A M Wright A D Wenger B Buizza L R Motti S G Eggimann H J Savill K J Borchert J Snaith H J Johnston M B 2020 J. Phys. Chem. Lett. 11 3681 DOI: 10.1021/acs.jpclett.0c01048
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.