INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Prev
Next
|
|
|
Room-temperature electric control of exchange bias effect in CoO1-δ/Co films using Pb(Mg1/3Nb2/3)0.7Ti0.3O3 (110) substrates |
Xin Wen(闻馨)1, Rui Wu(吴锐)1, Wen-Yun Yang(杨文云)1,2,3, Chang-Sheng Wang(王常生)1,2,3, Shun-Quan Liu(刘顺荃)1,2,3, Jing-Zhi Han(韩景智)1,2,3, Jin-Bo Yang(杨金波)1,2,3 |
1 State Key Laboratory for Mesoscopic Physics and School of Physics, Peking University, Beijing 100871, China; 2 Beijing Key Laboratory for Magnetoelectric Materials and Devices, Beijing 100871, China; 3 Collaborative Innovation Center of Quantum Matter, Beijing 100871, China |
|
|
Abstract Significant electric control of exchange bias effect in a simple CoO1-δ/Co system, grown on piezoelectric Pb(Mg1/3Nb2/3)0.7Ti0.3O3 (110) (PMN-PT) substrates, is achieved at room temperature. Obvious changes in both the coercivity field (HC) and the exchange bias field (HE), of 31% and 5%, respectively, have been observed when the electric field is applied to the substrate. While the change of coercivity is related to the enhanced uniaxial anisotropy in the ferromagnetic layer, the change of the exchange bias field can only originate from the spin reorientation in the antiferromagnetic CoO1-δ layer caused by the strain-induced magnetoelastic effect. A large HE/HC > 2, and HE~ 110 Oe at room temperature, as well as the low-energy fabrication of this system, make it a practical system for spintronic device applications.
|
Received: 08 June 2020
Revised: 03 July 2020
Accepted manuscript online: 15 July 2020
|
PACS:
|
85.75.-d
|
(Magnetoelectronics; spintronics: devices exploiting spin polarized transport or integrated magnetic fields)
|
|
85.75.Dd
|
(Magnetic memory using magnetic tunnel junctions)
|
|
75.50.-y
|
(Studies of specific magnetic materials)
|
|
75.30.Gw
|
(Magnetic anisotropy)
|
|
Fund: Project supported by the National Key R&D Program of China (Grant Nos. 2017YFA0206303 and 2017YFA020630) and the National Natural Science Foundation of China (Grant Nos. 11975035 and 51731001). |
Corresponding Authors:
Rui Wu
E-mail: wurui2010@pku.edu.cn
|
Cite this article:
Xin Wen(闻馨), Rui Wu(吴锐), Wen-Yun Yang(杨文云), Chang-Sheng Wang(王常生), Shun-Quan Liu(刘顺荃), Jing-Zhi Han(韩景智), Jin-Bo Yang(杨金波) Room-temperature electric control of exchange bias effect in CoO1-δ/Co films using Pb(Mg1/3Nb2/3)0.7Ti0.3O3 (110) substrates 2020 Chin. Phys. B 29 098503
|
[1] |
Newhouse-illige T, Liu Y, Xu M, Reifsnyder Hickey D, Kundu A, Almasi H, Bi C, Wang X, Freeland J W, Keavney D J, Sun C J, Xu Y H, Rosales M, Cheng X M, Zhang S, Mkhoyan K A and Wang W G 2017 Nat. Commun. 8 15232
|
[2] |
Xiang L, Yu G, Hao W, Ong P V, Wong K, Qi H, Ebrahimi F, Upadhyaya P, Akyol M, Kioussis N, Han X, Amiri P K and Wang K L 2015 Appl. Phys. Lett. 107 142403.1
|
[3] |
Zhang L, Wing S and Leung C M 2015 J. Appl. Phys. 117 17A748
|
[4] |
Kiwi M 2001 J. Magn. Magn. Mater. 234 584
|
[5] |
Meiklejohn W H and Bean C P 1957 Phys. Rev. 105 904
|
[6] |
Wu R, Ding S, Lai Y, Tian G and Yang J 2018 Phys. Rev. B 97 024428
|
[7] |
Wu R, Xue M, Maity T, Peng Y, Giri S K, Tian G, MacManus-Driscoll J L and Yang J 2020 Phys. Rev. B 101 014425
|
[8] |
Gan H D, Matsukura F, Miura K, Ikeda S, Mizunuma K, Ohno H, Hayakawa J, Yamamoto H, Kanai S and Endo M 2010 Nat. Mater. 9 721
|
[9] |
Miron I M, Garello K, Gaudin G, Zermatten P J, Costache M V, Auffret S, Bandiera S, Rodmacq B, Schuhl A and Gambardella P 2011 Nature 476 189
|
[10] |
Martí X, Sánchez F, Hrabovsky D, Fábrega L, Ruyter A, Fontcuberta J, Laukhin V, Skumryev V, García-Cuenca M V, Ferrater C, Varela M, Vilá A, Lüders U and Bobo J F 2006 Appl. Phys. Lett. 89 32510
|
[11] |
He X, Wang Y, Wu N, Caruso A, Vescovo E, Belashchenko K, A Dowben P and ChristianBinek 2010 Nat. Mater. 9 579
|
[12] |
Wu S M, Cybart S A, Yu P, Rossell M D, Zhang J X, Ramesh R and Dynes R C 2010 Nat. Mater. 9 756
|
[13] |
Wu S M, Cybart S A, Yi D, Parker J M, Ramesh R and Dynes R C 2013 Phys. Rev. Lett. 110 067202
|
[14] |
Choi E M, Weal E, Bi Z, Wang H, Kursumovic A, Fix T, Blamire M G and MacManus-Driscoll J L 2013 Appl. Phys. Lett. 102 012905
|
[15] |
Ding S L, Wu R, Fu J B, Wen X, Du H L, Liu S Q, Han J Z, Yang Y C, Wang C S, Zhou D and Yang J B 2015 Appl. Phys. Lett. 107 172404
|
[16] |
Rizwan S, Ali S I, Zhang Q T, Zhang S, Zhao Y G, Anis-Ur-Rehman M, Tufail M and Han X F 2013 J. Appl. Phys. 114 104108.1
|
[17] |
Wu S Z, Miao J, Xu X G, Yan W, Reeve R, Zhang X H and Jiang Y 2015 Sci. Rep. 5 8905
|
[18] |
Rizwan S, Yu G Q, Zhang S, Zhao Y G and Han X F 2012 J. Appl. Phys. 112 064120
|
[19] |
Meiklejohn W H 1962 J. Appl. Phys. 33 1328
|
[20] |
Xia Y H, Wu R, Zhang Y F, Liu S Q, Du H L, Han J Z, Wang C S, Chen X P, Xie L, Yang Y C and Yang J B 2017 Phys. Rev. B 96 064440
|
[21] |
Wu X, Ambrose T and Chien C 1998 Appl. Phys. Lett. 72 2176
|
[22] |
Bai Y, Yun G and Bai N 2010 J. Appl. Phys. 107 033905
|
[23] |
Sander D 1999 Rep. Prog. Phys. 62 809
|
[24] |
Valeri S, Altieri S and Luches P 2010 Magnetic Properties of Antiferromagnetic Oxide Materials: Surfaces, Interfaces, and Thin Films (Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA) pp. 25-68
|
[25] |
Chen Y T, Jen S U, Yao Y D, Wu J M, Lee C C and Sun A C 2006 IEEE Transactions on Magnetics 42 278
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|