Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(9): 098503    DOI: 10.1088/1674-1056/aba611
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Room-temperature electric control of exchange bias effect in CoO1-δ/Co films using Pb(Mg1/3Nb2/3)0.7Ti0.3O3 (110) substrates

Xin Wen(闻馨)1, Rui Wu(吴锐)1, Wen-Yun Yang(杨文云)1,2,3, Chang-Sheng Wang(王常生)1,2,3, Shun-Quan Liu(刘顺荃)1,2,3, Jing-Zhi Han(韩景智)1,2,3, Jin-Bo Yang(杨金波)1,2,3
1 State Key Laboratory for Mesoscopic Physics and School of Physics, Peking University, Beijing 100871, China;
2 Beijing Key Laboratory for Magnetoelectric Materials and Devices, Beijing 100871, China;
3 Collaborative Innovation Center of Quantum Matter, Beijing 100871, China
Abstract  Significant electric control of exchange bias effect in a simple CoO1-δ/Co system, grown on piezoelectric Pb(Mg1/3Nb2/3)0.7Ti0.3O3 (110) (PMN-PT) substrates, is achieved at room temperature. Obvious changes in both the coercivity field (HC) and the exchange bias field (HE), of 31% and 5%, respectively, have been observed when the electric field is applied to the substrate. While the change of coercivity is related to the enhanced uniaxial anisotropy in the ferromagnetic layer, the change of the exchange bias field can only originate from the spin reorientation in the antiferromagnetic CoO1-δ layer caused by the strain-induced magnetoelastic effect. A large HE/HC > 2, and HE~ 110 Oe at room temperature, as well as the low-energy fabrication of this system, make it a practical system for spintronic device applications.
Keywords:  electric control      exchange bias      PMN-PT      magnetic anisotropy  
Received:  08 June 2020      Revised:  03 July 2020      Accepted manuscript online:  15 July 2020
PACS:  85.75.-d (Magnetoelectronics; spintronics: devices exploiting spin polarized transport or integrated magnetic fields)  
  85.75.Dd (Magnetic memory using magnetic tunnel junctions)  
  75.50.-y (Studies of specific magnetic materials)  
  75.30.Gw (Magnetic anisotropy)  
Fund: Project supported by the National Key R&D Program of China (Grant Nos. 2017YFA0206303 and 2017YFA020630) and the National Natural Science Foundation of China (Grant Nos. 11975035 and 51731001).
Corresponding Authors:  Rui Wu     E-mail:  wurui2010@pku.edu.cn

Cite this article: 

Xin Wen(闻馨), Rui Wu(吴锐), Wen-Yun Yang(杨文云), Chang-Sheng Wang(王常生), Shun-Quan Liu(刘顺荃), Jing-Zhi Han(韩景智), Jin-Bo Yang(杨金波) Room-temperature electric control of exchange bias effect in CoO1-δ/Co films using Pb(Mg1/3Nb2/3)0.7Ti0.3O3 (110) substrates 2020 Chin. Phys. B 29 098503

[1] Newhouse-illige T, Liu Y, Xu M, Reifsnyder Hickey D, Kundu A, Almasi H, Bi C, Wang X, Freeland J W, Keavney D J, Sun C J, Xu Y H, Rosales M, Cheng X M, Zhang S, Mkhoyan K A and Wang W G 2017 Nat. Commun. 8 15232
[2] Xiang L, Yu G, Hao W, Ong P V, Wong K, Qi H, Ebrahimi F, Upadhyaya P, Akyol M, Kioussis N, Han X, Amiri P K and Wang K L 2015 Appl. Phys. Lett. 107 142403.1
[3] Zhang L, Wing S and Leung C M 2015 J. Appl. Phys. 117 17A748
[4] Kiwi M 2001 J. Magn. Magn. Mater. 234 584
[5] Meiklejohn W H and Bean C P 1957 Phys. Rev. 105 904
[6] Wu R, Ding S, Lai Y, Tian G and Yang J 2018 Phys. Rev. B 97 024428
[7] Wu R, Xue M, Maity T, Peng Y, Giri S K, Tian G, MacManus-Driscoll J L and Yang J 2020 Phys. Rev. B 101 014425
[8] Gan H D, Matsukura F, Miura K, Ikeda S, Mizunuma K, Ohno H, Hayakawa J, Yamamoto H, Kanai S and Endo M 2010 Nat. Mater. 9 721
[9] Miron I M, Garello K, Gaudin G, Zermatten P J, Costache M V, Auffret S, Bandiera S, Rodmacq B, Schuhl A and Gambardella P 2011 Nature 476 189
[10] Martí X, Sánchez F, Hrabovsky D, Fábrega L, Ruyter A, Fontcuberta J, Laukhin V, Skumryev V, García-Cuenca M V, Ferrater C, Varela M, Vilá A, Lüders U and Bobo J F 2006 Appl. Phys. Lett. 89 32510
[11] He X, Wang Y, Wu N, Caruso A, Vescovo E, Belashchenko K, A Dowben P and ChristianBinek 2010 Nat. Mater. 9 579
[12] Wu S M, Cybart S A, Yu P, Rossell M D, Zhang J X, Ramesh R and Dynes R C 2010 Nat. Mater. 9 756
[13] Wu S M, Cybart S A, Yi D, Parker J M, Ramesh R and Dynes R C 2013 Phys. Rev. Lett. 110 067202
[14] Choi E M, Weal E, Bi Z, Wang H, Kursumovic A, Fix T, Blamire M G and MacManus-Driscoll J L 2013 Appl. Phys. Lett. 102 012905
[15] Ding S L, Wu R, Fu J B, Wen X, Du H L, Liu S Q, Han J Z, Yang Y C, Wang C S, Zhou D and Yang J B 2015 Appl. Phys. Lett. 107 172404
[16] Rizwan S, Ali S I, Zhang Q T, Zhang S, Zhao Y G, Anis-Ur-Rehman M, Tufail M and Han X F 2013 J. Appl. Phys. 114 104108.1
[17] Wu S Z, Miao J, Xu X G, Yan W, Reeve R, Zhang X H and Jiang Y 2015 Sci. Rep. 5 8905
[18] Rizwan S, Yu G Q, Zhang S, Zhao Y G and Han X F 2012 J. Appl. Phys. 112 064120
[19] Meiklejohn W H 1962 J. Appl. Phys. 33 1328
[20] Xia Y H, Wu R, Zhang Y F, Liu S Q, Du H L, Han J Z, Wang C S, Chen X P, Xie L, Yang Y C and Yang J B 2017 Phys. Rev. B 96 064440
[21] Wu X, Ambrose T and Chien C 1998 Appl. Phys. Lett. 72 2176
[22] Bai Y, Yun G and Bai N 2010 J. Appl. Phys. 107 033905
[23] Sander D 1999 Rep. Prog. Phys. 62 809
[24] Valeri S, Altieri S and Luches P 2010 Magnetic Properties of Antiferromagnetic Oxide Materials: Surfaces, Interfaces, and Thin Films (Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA) pp. 25-68
[25] Chen Y T, Jen S U, Yao Y D, Wu J M, Lee C C and Sun A C 2006 IEEE Transactions on Magnetics 42 278
[1] High repetition granular Co/Pt multilayers with improved perpendicular remanent magnetization for high-density magnetic recording
Zhi Li(李智), Kun Zhang(张昆), Ao Du(杜奥), Hongchao Zhang(张洪超), Weibin Chen(陈伟斌), Ning Xu(徐宁), Runrun Hao(郝润润), Shishen Yan(颜世申), Weisheng Zhao(赵巍胜), and Qunwen Leng(冷群文). Chin. Phys. B, 2023, 32(2): 026803.
[2] Bismuth doping enhanced tunability of strain-controlled magnetic anisotropy in epitaxial Y3Fe5O12(111) films
Yunpeng Jia(贾云鹏), Zhengguo Liang(梁正国), Haolin Pan(潘昊霖), Qing Wang(王庆), Qiming Lv(吕崎鸣), Yifei Yan(严轶非), Feng Jin(金锋), Dazhi Hou(侯达之), Lingfei Wang(王凌飞), and Wenbin Wu(吴文彬). Chin. Phys. B, 2023, 32(2): 027501.
[3] Thickness-dependent magnetic properties in Pt/[Co/Ni]n multilayers with perpendicular magnetic anisotropy
Chunjie Yan(晏春杰), Lina Chen(陈丽娜), Kaiyuan Zhou(周恺元), Liupeng Yang(杨留鹏), Qingwei Fu(付清为), Wenqiang Wang(王文强), Wen-Cheng Yue(岳文诚), Like Liang(梁力克), Zui Tao(陶醉), Jun Du(杜军),Yong-Lei Wang(王永磊), and Ronghua Liu(刘荣华). Chin. Phys. B, 2023, 32(1): 017503.
[4] Exchange-coupling-induced fourfold magnetic anisotropy in CoFeB/FeRh bilayer grown on SrTiO3(001)
Qingrong Shao(邵倾蓉), Jing Meng(孟婧), Xiaoyan Zhu(朱晓艳), Yali Xie(谢亚丽), Wenjuan Cheng(程文娟), Dongmei Jiang(蒋冬梅), Yang Xu(徐杨), Tian Shang(商恬), and Qingfeng Zhan(詹清峰). Chin. Phys. B, 2022, 31(8): 087503.
[5] Voltage control magnetism and ferromagnetic resonance in an Fe19Ni81/PMN-PT heterostructure by strain
Jun Ren(任军), Junming Li(李军明), Sheng Zhang(张胜), Jun Li(李骏), Wenxia Su(苏文霞), Dunhui Wang(王敦辉), Qingqi Cao(曹庆琪), and Youwei Du(都有为). Chin. Phys. B, 2022, 31(7): 077502.
[6] The 50 nm-thick yttrium iron garnet films with perpendicular magnetic anisotropy
Shuyao Chen(陈姝瑶), Yunfei Xie(谢云飞), Yucong Yang(杨玉聪), Dong Gao(高栋), Donghua Liu(刘冬华), Lin Qin(秦林), Wei Yan(严巍), Bi Tan(谭碧), Qiuli Chen(陈秋丽), Tao Gong(龚涛), En Li(李恩), Lei Bi(毕磊), Tao Liu(刘涛), and Longjiang Deng(邓龙江). Chin. Phys. B, 2022, 31(4): 048503.
[7] Perpendicular magnetization and exchange bias in epitaxial NiO/[Ni/Pt]2 multilayers
Lin-Ao Huang(黄林傲), Mei-Yu Wang(王梅雨), Peng Wang(王鹏), Yuan Yuan(袁源), Ruo-Bai Liu(刘若柏), Tian-Yu Liu(刘天宇), Yu Lu(卢羽), Jia-Rui Chen(陈家瑞), Lu-Jun Wei(魏陆军), Wei Zhang(张维), Biao You(游彪), Qing-Yu Xu(徐庆宇), and Jun Du(杜军). Chin. Phys. B, 2022, 31(2): 027506.
[8] Perpendicular magnetic anisotropy of Pd/Co2MnSi/NiFe2O4/Pd multilayers on F-mica substrates
Qingwang Bai(白青旺), Bin Guo(郭斌), Qin Yin(尹钦), and Shuyun Wang(王书运). Chin. Phys. B, 2022, 31(1): 017501.
[9] Magnetic dynamics of two-dimensional itinerant ferromagnet Fe3GeTe2
Lijun Ni(倪丽君), Zhendong Chen(陈振东), Wei Li(李威), Xianyang Lu(陆显扬), Yu Yan(严羽), Longlong Zhang(张龙龙), Chunjie Yan(晏春杰), Yang Chen(陈阳), Yaoyu Gu(顾耀玉), Yao Li(黎遥), Rong Zhang(张荣), Ya Zhai(翟亚), Ronghua Liu(刘荣华), Yi Yang(杨燚), and Yongbing Xu(徐永兵). Chin. Phys. B, 2021, 30(9): 097501.
[10] Optimized growth of compensated ferrimagnetic insulator Gd3Fe5O12 with a perpendicular magnetic anisotropy
Heng-An Zhou(周恒安), Li Cai(蔡立), Teng Xu(许腾), Yonggang Zhao(赵永刚), and Wanjun Jiang(江万军). Chin. Phys. B, 2021, 30(9): 097503.
[11] Electric-field-induced in-plane effective 90° magnetization rotation in Co2FeAl/PMN-PT structure
Cai Zhou(周偲), Dengyu Zhu(朱登玉), Fufu Liu(刘福福), Cunfang Feng(冯存芳), Mingfang Zhang(张铭芳), Lei Ding(丁磊), Mingyao Xu(许明耀), and Shengxiang Wang(汪胜祥). Chin. Phys. B, 2021, 30(5): 057504.
[12] Origin of itinerant ferromagnetism in two-dimensional Fe3GeTe2
Xi Chen(陈熙), Zheng-Zhe Lin(林正喆), and Li-Rong Cheng(程丽蓉). Chin. Phys. B, 2021, 30(4): 047502.
[13] Magnetic anisotropy in 5d transition metal-porphyrin molecules
Yan-Wen Zhang(张岩文), Gui-Xian Ge(葛桂贤), Hai-Bin Sun(孙海斌), Jue-Ming Yang(杨觉明), Hong-Xia Yan(闫红霞), Long Zhou(周龙), Jian-Guo Wan(万建国), and Guang-Hou Wang(王广厚). Chin. Phys. B, 2021, 30(4): 047501.
[14] Enhanced hyperthermia performance in hard-soft magnetic mixed Zn0.5CoxFe2.5-xO4/SiO2 composite magnetic nanoparticles
Xiang Yu(俞翔, Li-Chen Wang(王利晨, Zheng-Rui Li(李峥睿, Yan Mi(米岩), Di-An Wu(吴迪安), and Shu-Li He(贺淑莉). Chin. Phys. B, 2021, 30(3): 036201.
[15] RF magnetron sputtering induced the perpendicular magnetic anisotropy modification in Pt/Co based multilayers
Runze Li(李润泽), Yucai Li(李予才), Yu Sheng(盛宇), and Kaiyou Wang(王开友). Chin. Phys. B, 2021, 30(2): 028506.
No Suggested Reading articles found!