Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(9): 097701    DOI: 10.1088/1674-1056/aba603
Special Issue: SPECIAL TOPIC — Physics in neuromorphic devices
TOPICAL REVIEW—Physics in neuromorphic devices Prev   Next  

Recent advances, perspectives, and challenges inferroelectric synapses

Bo-Bo Tian(田博博)1, Ni Zhong(钟妮)1, Chun-Gang Duan(段纯刚)1,2
1 Key Laboratory of Polar Materials and Devices(MOE), Department of Electronics, East China Normal University, Shanghai 200241, China;
2 Collaborative Innovation Center of Extreme Optics, Shanxi University, Shanxi 030006, China
Abstract  The multiple ferroelectric polarization tuned by external electric field could be used to simulate the biological synaptic weight. Ferroelectric synaptic devices have two advantages compared with other reported ones: One is that the intrinsic switching of ferroelectric domains without invoking of defect migration as in resistive oxides, contributes reliable performance in these ferroelectric synapses. Another tremendous advantage is the extremely low energy consumption because the ferroelectric polarization is manipulated by electric field which eliminates the Joule heating by current as in magnetic and phase change memories. Ferroelectric synapses have potential for the construction of low-energy and effective brain-like intelligent networks. Here we summarize recent pioneering work of ferroelectric synapses involving the structure of ferroelectric tunnel junctions (FTJs), ferroelectric diodes (FDs), and ferroelectric field effect transistors (FeFETs), respectively, and shed light on future work needed to accelerate their application for efficient neural network.
Keywords:  ferroelectric      synapse      ferroelectric tunnel junctions      ferroelectric field effect transistors  
Received:  11 May 2020      Revised:  08 July 2020      Accepted manuscript online:  15 July 2020
PACS:  77.22.Ej (Polarization and depolarization)  
  77.80.Dj (Domain structure; hysteresis)  
  87.19.lg (Synapses: chemical and electrical (gap junctions))  
  75.85.+t (Magnetoelectric effects, multiferroics)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 61804055), "Chenguang Program" supported by Shanghai Education Development Foundation and Shanghai Municipal Education Commission, China (Grant No. 17CG24), and Shanghai Science and Technology Innovation Action Plan, China (Grant No. 19JC1416700).
Corresponding Authors:  Bo-Bo Tian, Chun-Gang Duan     E-mail:  bbtian@ee.ecnu.edu.cn;cgduan@clpm.ecnu.edu.cn

Cite this article: 

Bo-Bo Tian(田博博), Ni Zhong(钟妮), Chun-Gang Duan(段纯刚) Recent advances, perspectives, and challenges inferroelectric synapses 2020 Chin. Phys. B 29 097701

[1] Tian B, Liu L, Yan M, Wang J, Zhao Q, Zhong N, Xiang P, Sun L, Peng H, Shen H, Lin T, Dkhil B, Meng X, Chu J, Tang X and Duan C 2019 Adv. Electron. Mater. 5 1800600
[2] Lee S H, Zhu X and Lu W D 2020 Nano Res. 13 1228
[3] Wang Z, Wu H, Burr G W, Hwang C S, Wang K L, Xia Q and Yang J J 2020 Nat. Rev. Mater. 5 173
[4] Zhang Z, Wang Z, Shi T, Bi C, Rao F, Cai Y, Liu Q, Wu H and Zhou P 2020 InfoMat 2 261
[5] Liu S, Grinberg I and Rappe A M 2016 Nature 534 360
[6] Nelson C T, Gao P, Jokisaari J R, Heikes C, Adamo C, Melville A, Baek S H, Folkman C M, Winchester B, Gu Y, Liu Y, Zhang K, Wang E, Li J, Chen L Q, Eom C B, Schlom D G and Pan X 2011 Science 334 968
[7] Zhuravlev M Y, Sabirianov R F, Jaswal S S and Tsymbal E Y 2005 Phys. Rev. Lett. 94 246802
[8] Esaki L, Laibowitz R B and Stiles P J 1971 IBM Tech. Discl. Bull. 13 2161
[9] Béa H, Fusil S, Bouzehouane K, Bibes M, Sirena M, Herranz G, Jacquet E, Contour J P and Barthélémy A 2006 Jpn. J. Appl. Phys. 45 L187
[10] Tenne D, Bruchhausen A, Lanzillotti-Kimura N, Fainstein A, Katiyar R, Cantarero A, Soukiassian A, Vaithyanathan V, Haeni J and Tian W 2006 Science 313 1614
[11] Fong D D, Stephenson G B, Streiffer S K, Eastman J A, Auciello O, Fuoss P H and Thompson C 2004 Science 304 1650
[12] Garcia V, Fusil S, Bouzehouane K, Enouz-Vedrenne S, Mathur N D, Barthelemy A and Bibes M 2009 Nature 460 81
[13] Maksymovych P, Jesse S, Yu P, Ramesh R, Baddorf A P and Kalinin S V 2009 Science 324 1421
[14] Gruverman A, Wu D, Lu H, Wang Y, Jang H W, Folkman C M, Zhuravlev M Y, Felker D, Rzchowski M, Eom C B and Tsymbal E Y 2009 Nano Lett. 9 3539
[15] Pantel D, Goetze S, Hesse D and Alexe M 2011 ACS Nano 5 6032
[16] Chanthbouala A, Crassous A, Garcia V, Bouzehouane K, Fusil S, Moya X, Allibe J, Dlubak B, Grollier J, Xavier S, Deranlot C, Moshar A, Proksch R, Mathur N D, Bibes M and Barthelemy A 2012 Nat. Nanotech. 7 101
[17] Wen Z, Li C, Wu D, Li A and Ming N 2013 Nat. Mater. 12 617
[18] Yin Y W, Burton J D, Kim Y M, Borisevich A Y, Pennycook S J, Yang S M, Noh T W, Gruverman A, Li X G, Tsymbal E Y and Li Q 2013 Nat. Mater. 12 397
[19] Soni R, Petraru A, Meuffels P, Vavra O, Ziegler M, Kim S K, Jeong D S, Pertsev N A and Kohlstedt H 2014 Nat. Commun. 5 5414
[20] Li C, Huang L, Li T, Lu W, Qiu X, Huang Z, Liu Z, Zeng S, Guo R, Zhao Y, Zeng K, Coey M, Chen J, Ariando and Venkatesan T 2015 Nano Lett. 15 2568
[21] Yamada H, Tsurumaki-Fukuchi A, Kobayashi M, Nagai T, Toyosaki Y, Kumigashira H and Sawa A 2015 Adv. Funct. Mater. 25 2708
[22] Radaelli G, Gutierrez D, Sanchez F, Bertacco R, Stengel M and Fontcuberta J 2015 Adv. Mater. 27 2602
[23] Pantel D, Lu H, Goetze S, Werner P, Jik Kim D, Gruverman A, Hesse D and Alexe M 2012 Appl. Phys. Lett. 100 232902
[24] Yamada H, Garcia V, Fusil S, Boyn S, Marinova M, Gloter A, Xavier S, Grollier J, Jacquet E, Carretero C, Deranlot C, Bibes M and Barthelemy A 2013 ACS Nano 7 5385
[25] Wen Z and Wu D 2019 Adv. Mater. 1904123
[26] Li J, Li N, Ge C, Huang H, Sun Y, Gao P, He M, Wang C, Yang G and Jin K 2019 IScience 16 368
[27] Velev J P, Duan C G, Burton J, Smogunov A, Niranjan M K, Tosatti E, Jaswal S and Tsymbal E Y 2009 Nano Lett. 9 427
[28] Garcia V, Bibes M, Bocher L, Valencia S, Kronast F, Crassous A, Moya X, Enouz-Vedrenne S, Gloter A and Imhoff D 2010 Science 327 1106
[29] Pantel D, Goetze S, Hesse D and Alexe M 2012 Nat. Mater. 11 289
[30] Gajek M, Bibes M, Fusil S, Bouzehouane K, Fontcuberta J, Barthélémy A and Fert A 2007 Nat. Mater. 6 296
[31] Huang W, Zhao W, Luo Z, Yin Y, Lin Y, Hou C, Tian B, Duan C G and Li X G 2018 Adv. Electron. Mater. 4 1700560
[32] Goh Y and Jeon S 2018 Appl. Phys. Lett. 113 052905
[33] Kobayashi M, Tagawa Y, Mo F, Saraya T and Hiramoto T 2019 IEEE J. Electron. Devi. 7 134
[34] Ambriz-Vargas F, Kolhatkar G, Broyer M, Hadj-Youssef A, Nouar R, Sarkissian A, Thomas R, Gomez-Yanez C, Gauthier M A and Ruediger A 2017 ACS Appl. Mater. Inter. 9 13262
[35] Wei Y, Matzen S, Maroutian T, Agnus G, Salverda M, Nukala P, Chen Q, Ye J, Lecoeur P and Noheda B 2019 Phys. Rev. Appl. 12 031001
[36] Chen L, Wang T Y, Dai Y W, Cha M Y, Zhu H, Sun Q Q, Ding S J, Zhou P, Chua L and Zhang D W 2018 Nanoscale 10 15826
[37] Tian B, Wang J, Fusil S, Liu Y, Zhao X, Sun S, Shen H, Lin T, Sun J, Duan C, Bibes M, Barthelemy A, Dkhil B, Garcia V, Meng X and Chu J 2016 Nat. Commun. 7 11502
[38] Chanthbouala A, Garcia V, Cherifi R O, Bouzehouane K, Fusil S, Moya X, Xavier S, Yamada H, Deranlot C, Mathur N D, Bibes M, Barthelemy A and Grollier J 2012 Nat. Mater. 11 860
[39] Kim D J, Lu H, Ryu S, Bark C W, Eom C B, Tsymbal E Y and Gruverman A 2012 Nano Lett. 12 5697
[40] Majumdar S, Tan H, Qin Q H and van Dijken S 2019 Adv. Electron. Mater. 5 1800795
[41] Wang Z H, Zhao W, Kang W, Zhang Y G, Klein J O and Chappert C 2014 Int. Joint Conf. Neural Networks (IJCNN), Beijing, 2014, pp. 29-34
[42] Yoon C, Lee J H, Lee S, Jeon J H, Jang J T, Kim D H, Kim Y H and Park B H 2017 Nano Lett. 17 1949
[43] Boyn S, Grollier J, Lecerf G, Xu B, Locatelli N, Fusil S, Girod S, Carretero C, Garcia K, Xavier S, Tomas J, Bellaiche L, Bibes M, Barthelemy A, Saighi S and Garcia V 2017 Nat. Commun. 8 14736
[44] Huang W, Fang Y W, Yin Y, Tian B, Zhao W, Hou C, Ma C, Li Q, Tsymbal E Y, Duan C G and Li X 2018 ACS Appl. Mater. Inter. 10 5649
[45] Li J, Ge C, Du J, Wang C, Yang G and Jin K 2019 Adv. Mater. 1905764
[46] Thomas A, Niehorster S, Fabretti S, Shepheard N, Kuschel O, Kupper K, Wollschlager J, Krzysteczko P and Chicca E 2015 Front. Neurosci. 9 241
[47] Zamarreno-Ramos C, Camunas-Mesa L A, Perez-Carrasco J A, Masquelier T, Serrano-Gotarredona T and Linares-Barranco B 2011 Front. Neurosci. 5 26
[48] Markram H, Lübke J, Frotscher M and Sakmann B 1997 Science 275 213
[49] Ma C, Luo Z, Huang W, Zhao L, Chen Q, Lin Y, Liu X, Chen Z, Liu C, Sun H, Jin X, Yin Y and Li X 2020 Nat. Commun. 11 1439
[50] Coll M, Fontcuberta J, Althammer M, et al. 2019 Appl. Surf. Sci. 482 1
[51] Wang J, Liu B, Zhao X, Tian B, Zou Y, Sun S, Shen H, Sun J, Meng X and Chu J 2014 Appl. Phys. Lett. 104 182907
[52] Tian B, Liu Y, Chen L, Wang J, Sun S, Shen H, Sun J, Yuan G, Fusil S, Garcia V, Dkhil B, Meng X and Chu J 2016 Sci. Rep. 5 18297
[53] Tian B, Chen L, Liu Y, Bai X, Wang J, Sun S, Yuan G, Sun J, Dkhil B, Meng X and Chu J 2015 Phys. Rev. B 92 060102(R)
[54] Tian B, Chen Z, Jiang A, Zhao X, Liu B, Wang J, Han L, Sun S, Sun J, Meng X and Chu J 2013 Appl. Phys. Lett. 103 042909
[55] Tian B, Zhao X, Liu B, Wang J, Han L, Sun J, Meng X and Chu J 2013 Appl. Phys. Lett. 102 072906
[56] Tian B, Bai X, Liu Y, Gemeiner P, Zhao X, Liu B, Zou Y, Wang X, Huang H, Wang J, Sun S, Sun J, Dkhil B, Meng X and Chu J 2015 Appl. Phys. Lett. 106 092902
[57] Yin Z, Tian B, Zhu Q and Duan C 2019 Polymers 11 2033
[58] Majumdar S, Chen B, Qin Q H, Majumdar H S and van Dijken S 2018 Adv. Funct. Mater. 28 1703273
[59] Shi L, Zheng G, Tian B, Dkhil B and Duan C 2020 Nanoscale Adv. 2 1811
[60] Chen P, Peng X and Yu S 2017 IEEE Int. Electron. Devices Meeting (IEDM), San Francisco, CA, 2017, pp. 6.1.1-6.1.4
[61] Cheema S S, Kwon D, Shanker N, Dos Reis R, Hsu S L, Xiao J, Zhang H, Wagner R, Datar A, McCarter M R, Serrao C R, Yadav A K, Karbasian G, Hsu C H, Tan A J, Wang L C, Thakare V, Zhang X, Mehta A, Karapetrova E, Chopdekar R V, Shafer P, Arenholz E, Hu C, Proksch R, Ramesh R, Ciston J and Salahuddin S 2020 Nature 580 478
[62] Böscke T S, Müller J, Bräuhaus D, Schröder U and Böttger U 2011 Appl. Phys. Lett. 99 102903
[63] Kim S J, Narayan D, Lee J G, Mohan J, Lee J S, Lee J, Kim H S, Byun Y C, Lucero A T, Young C D, Summerfelt S R, San T, Colombo L and Kim J 2017 Appl. Phys. Lett. 111 242901
[64] Schroeder U, Materano M, Mittmann T, Lomenzo P D, Mikolajick T and Toriumi A 2019 Jpn. J. Appl. Phys. 58 Sl0801
[65] Yoong H Y, Wu H, Zhao J, Wang H, Guo R, Xiao J, Zhang B, Yang P, Pennycook S J, Deng N, Yan X and Chen J 2018 Adv. Funct. Mater. 28 1806037
[66] Mittermeier B, Dörfler A, Horoschenkoff A, Katoch R, Schindler C, Ruediger A and Kolhatkar G 2019 Adv. Intel. Syst. 1 1900034
[67] Blom P W, Wolf R M, Cillessen J F and Krijn M P 1994 Phys. Rev. Lett. 73 2107
[68] Hu Z, Li Q, Li M, Wang Q, Zhu Y, Liu X, Zhao X, Liu Y and Dong S 2013 Appl. Phys. Lett. 102 102901
[69] Yang N, Ren Z Q, Hu C Z, Guan Z, Tian B B, Zhong N, Xiang P H, Duan C G and Chu J H 2019 Nanotechnology 30 464001
[70] Wu S, Ren L, Yu F, Yang K, Yang M, Wang Y, Meng M, Zhou W and Li S 2014 Appl. Phys. A 116 1741
[71] Jiang A Q, Wang C, Jin K J, Liu X B, Scott J F, Hwang C S, Tang T A, Lu H B and Yang G Z 2011 Adv. Mater. 23 1277
[72] Chen Z, He L, Zhang F, Jiang J, Meng J, Zhao B and Jiang A 2013 J. Appl. Phys. 113 184106
[73] Zhu H, Zhang Y, Jiang A, Bai Z, Feng S, Wang P, Meng X and Qi Q 2016 Appl. Phys. Lett. 109 252901
[74] Ge C, Jin K J, Wang C, Lu H B, Wang C and Yang G Z 2011 Appl. Phys. Lett. 99 063509
[75] Wang C, Jin K-j, Xu Z-t, Wang L, Ge C, Lu H-b, Guo H-z, He M and Yang G-z 2011 Appl. Phys. Lett. 98 192901
[76] Jia M X, Ren Z Q, Liu Y D, Cheng Y, Huang R, Xiang P H, Tang X D, Tian B B, Zhong N and Duan C G 2019 Appl. Phys. Lett. 114 102901
[77] Wang Z J and Bai Y 2019 Small 15 e1805088
[78] Yoon S M, Tokumitsu E and Ishiwara H 1999 IEEE Electr. Device L. 20 229
[79] Kaneko Y, Nishitani Y and Ueda M 2014 IEEE T. Electr. Dev. 61 2827
[80] Jerry M, Chen P, Zhang J, Sharma P, Ni K, Yu S and Datta S 2017 IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, 2017, pp. 6.2.1-6.2.4
[81] Mulaosmanovic H, Ocker J, Müller S, Noack M, Müller J, Polakowski P, Mikolajick T and Slesazeck S 2017 Symposium on VLSI Technology, Kyoto, 2017, pp. T176-T177
[82] Seo M, Kang M H, Jeon S B, Bae H, Hur J, Jang B C, Yun S, Cho S, Kim W K, Kim M S, Hwang K M, Hong S, Choi S Y and Choi Y K 2018 IEEE Electr. Device Lett. 39 1445
[83] Kim M K and Lee J S 2019 Nano Lett. 19 2044
[84] Wang H, Zhao Q, Ni Z, Li Q, Liu H, Yang Y, Wang L, Ran Y, Guo Y, Hu W and Liu Y 2018 Adv. Mater. 30 870349
[85] Chen Y, Zhou Y, Zhuge F, Tian B, Yan M, Li Y, He Y and Miao X S 2019 npj 2D Mater. Appl. 3 31
[86] Xiong L, Chen Y, Yu J, Xiong W, Zhang X and Zheng Y 2019 Appl. Phys. Lett. 115 153107
[87] Choi Y, Kim J H, Qian C, Kang J, Hersam M C, Park J H and Cho J H 2020 ACS Appl. Mater. Inter. 12 4707
[88] Ishiwara H 1993 Jpn. J. Appl. Phys. 32 442
[89] Wu G, Tian B, Liu L, Lv W, Wu S, Wang X, Chen Y, Li J, Wang Z, Wu S, Shen H, Lin T, Zhou P, Liu Q, Duan C, Zhang S, Meng X, Wu S, Hu W, Wang X, Chu J and Wang J 2020 Nat. Electron. 3 43
[90] Wang X, Chen Y, Wu G, Wang J, Tian B, Sun S, Shen H, Lin T, Hu W, Kang T, Tang M, Xiao Y, Sun J, Meng X and Chu J 2018 Nanotechnology 29 134002
[91] Tsutsumi N, Kosugi R, Kinashi K and Sakai W 2016 ACS Appl. Mater. Inter. 8 16816
[92] Bai Y, Wang Z J, He B, Cui J Z and Zhang Z D 2017 ACS Omega 2 9067
[93] Liu X, Fan H, Shi J, Wang L and Du H 2016 RSC Adv. 6 30623
[94] Ali T, Polakowski P, Riedel S, Buttner T, Kampfe T, Rudolph M, Patzold B, Seidel K, Lohr D, Hoffmann R, Czernohorsky M, Kuhnel K, Steinke P, Calvo J, Zimmermann K and Muller J 2018 IEEE T. Electr. Dev. 65 3769
[95] Highland M J, Fister T T, Richard M I, Fong D D, Fuoss P H, Thompson C, Eastman J A, Streiffer S K and Stephenson G B 2010 Phys. Rev. Lett. 105 167601
[96] Mulaosmanovic H, Mikolajick T and Slesazeck S 2018 ACS Appl. Mater. Inter. 10 23997
[97] Kumar M, Georgiadou D G, Seitkhan A, Loganathan K, Yengel E, Faber H, Naphade D, Basu A, Anthopoulos T D and Asadi K 2020 Adv. Electron. Mater. 6 1901091
[98] Shen X W, Fang Y W, Tian B B and Duan C G 2019 ACS Appl. Electron. Mater. 1 1133
[99] Shen H, Liu J, Chang K and Fu L 2019 Phys. Rev. Appl. 11 024048
[100] Xue F, He X, Retamal J R D, Han A, Zhang J, Liu Z, Huang J K, Hu W, Tung V, He J H, Li L J and Zhang X 2019 Adv. Mater. 31 e1901300
[101] Jiang A Q and Zhang Y 2019 NPG Asia Mater. 11
[102] Lu P P, Shen J X, Shang D S and Sun Y 2020 ACS Appl. Mater. Inter. 12 4673
[1] Diffusive field coupling-induced synchronization between neural circuits under energy balance
Ya Wang(王亚), Guoping Sun(孙国平), and Guodong Ren(任国栋). Chin. Phys. B, 2023, 32(4): 040504.
[2] Strain engineering and hydrogen effect for two-dimensional ferroelectricity in monolayer group-IV monochalcogenides MX (M =Sn, Ge; X=Se, Te, S)
Maurice Franck Kenmogne Ndjoko, Bi-Dan Guo(郭必诞), Yin-Hui Peng(彭银辉), and Yu-Jun Zhao(赵宇军). Chin. Phys. B, 2023, 32(3): 036802.
[3] Ferroelectricity induced by the absorption of water molecules on double helix SnIP
Dan Liu(刘聃), Ran Wei(魏冉), Lin Han(韩琳), Chen Zhu(朱琛), and Shuai Dong(董帅). Chin. Phys. B, 2023, 32(3): 037701.
[4] Efficiently enhanced energy storage performance of Ba2Bi4Ti5O18 film by co-doping Fe3+ and Ta5+ ion with larger radius
Qiong Wu(吴琼), Lei Zhao(赵雷), Xinghao Chen(陈兴豪), and Shifeng Zhao(赵世峰). Chin. Phys. B, 2022, 31(9): 097701.
[5] Impact of AlxGa1-xN barrier thickness and Al composition on electrical properties of ferroelectric HfZrO/Al2O3/AlGaN/GaN MFSHEMTs
Yue Li(李跃), Xingpeng Liu(刘兴鹏), Tangyou Sun(孙堂友), Fabi Zhang(张法碧), Tao Fu(傅涛), Peihua Wang-yang(王阳培华), Haiou Li(李海鸥), and Yonghe Chen(陈永和). Chin. Phys. B, 2022, 31(9): 097307.
[6] Computational studies on magnetism and ferroelectricity
Ke Xu(徐可), Junsheng Feng(冯俊生), and Hongjun Xiang(向红军). Chin. Phys. B, 2022, 31(9): 097505.
[7] Wake-up effect in Hf0.4Zr0.6O2 ferroelectric thin-film capacitors under a cycling electric field
Yilin Li(李屹林), Hui Zhu(朱慧), Rui Li(李锐), Jie Liu(柳杰), Jinjuan Xiang(项金娟), Na Xie(解娜), Zeng Huang(黄增), Zhixuan Fang(方志轩), Xing Liu(刘行), and Lixing Zhou(周丽星). Chin. Phys. B, 2022, 31(8): 088502.
[8] Fabrication and investigation of ferroelectric memristors with various synaptic plasticities
Qi Qin(秦琦), Miaocheng Zhang(张缪城), Suhao Yao(姚苏昊), Xingyu Chen(陈星宇), Aoze Han(韩翱泽),Ziyang Chen(陈子洋), Chenxi Ma(马晨曦), Min Wang(王敏), Xintong Chen(陈昕彤), Yu Wang(王宇),Qiangqiang Zhang(张强强), Xiaoyan Liu(刘晓燕), Ertao Hu(胡二涛), Lei Wang(王磊), and Yi Tong(童祎). Chin. Phys. B, 2022, 31(7): 078502.
[9] Ferroelectric Ba0.75Sr0.25TiO3 tunable charge transfer in perovskite devices
Zi-Xuan Chen(陈子轩), Jia-Lin Sun(孙家林), Qiang Zhang(张强), Chong-Xin Qian(钱崇鑫), Ming-Zi Wang(王明梓), and Hong-Jian Feng(冯宏剑). Chin. Phys. B, 2022, 31(5): 057202.
[10] Influences of nanoparticles and chain length on thermodynamic and electrical behavior of fluorine liquid crystals
Ines Ben Amor, Lotfi Saadaoui, Abdulaziz N. Alharbi, Talal M. Althagafi, and Taoufik Soltani. Chin. Phys. B, 2022, 31(10): 104202.
[11] Artificial synaptic behavior of the SBT-memristor
Gang Dou(窦刚), Ming-Long Dou(窦明龙), Ren-Yuan Liu(刘任远), and Mei Guo(郭梅). Chin. Phys. B, 2021, 30(7): 078401.
[12] Dynamic phase transition of ferroelectric nanotube described by a spin-1/2 transverse Ising model
Chundong Wang(王春栋), Ying Wu(吴瑛), Yulin Cao(曹喻霖), and Xinying Xue(薛新英). Chin. Phys. B, 2021, 30(2): 020504.
[13] Sr-doping effects on conductivity, charge transport, and ferroelectricity of Ba0.7La0.3TiO3 epitaxial thin films
Qiang Li(李强), Dao Wang(王岛), Yan Zhang(张岩), Yu-Shan Li(李育珊), Ai-Hua Zhang(张爱华), Rui-Qiang Tao(陶瑞强), Zhen Fan(樊贞), Min Zeng(曾敏), Guo-Fu Zhou(周国富), Xu-Bing Lu(陆旭兵), and Jun-Ming Liu(刘俊明). Chin. Phys. B, 2021, 30(2): 027701.
[14] Insight into influence of thermodynamic coefficients on transient negative capacitance in Zr-doped HfO2 ferroelectric capacitors
Yuan-Yuan Zhang(张元元), Xiao-Qing Sun(孙晓清), Jun-Shuai Chai(柴俊帅), Hao Xu(徐昊), Xue-Li Ma(马雪丽), Jin-Juan Xiang(项金娟), Kai Han(韩锴), Xiao-Lei Wang(王晓磊), and Wen-Wu Wang(王文武). Chin. Phys. B, 2021, 30(12): 127701.
[15] Intrinsic two-dimensional multiferroicity in CrNCl2 monolayer
Wei Shen(沈威), Yuanhui Pan(潘远辉), Shengnan Shen(申胜男), Hui Li(李辉), Siyuan Nie(聂思媛), and Jie Mei(梅杰). Chin. Phys. B, 2021, 30(11): 117503.
No Suggested Reading articles found!