Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(9): 093301    DOI: 10.1088/1674-1056/aba5ff
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

Effects of temperature and pressure on OH laser-induced fluorescence exciting A-X (1,0) transition at high pressures

Xiaobo Tu(涂晓波)1,2, Linsen Wang(王林森)2, Xinhua Qi(齐新华)2, Bo Yan(闫博)2, Jinhe Mu(母金河)2, Shuang Chen(陈爽)2
1 Science and Technology on Scramjet Laboratory, Hypervelocity Aerodynamics Institute, China Aerodynamics Research and Development Center, Mianyang 621000, China;
2 China Aerodynamics Research and Development Center, Mianyang 621000, China
Abstract  The effects of temperature and pressure on laser-induced fluorescence (LIF) of OH are numerically studied under the excitation of A-X (1,0) transition at high pressures. A detailed theoretical analysis is carried out to reveal the physical processes of LIF. It is shown that high pressure LIF measurements get greatly complicated by the variations of pressure- and temperature-dependent parameters, such as Boltzmann fraction, absorption lineshape broadening, central-frequency shifting, and collisional quenching. Operations at high pressures require a careful choice of an excitation line, and the Q1(8) line in the A-X (1,0) band of OH is selected due to its minimum temperature dependence through the calculation of Boltzmann fraction. The absorption spectra of OH become much broader as pressure increases, leading to a smaller overlap integral and thus smaller excitation efficiency. The central-frequency shifting cannot be omitted at high pressures, and should be taken into account when setting the excitation frequency. The fluorescence yield is estimated based on the LASKIN calculation. Finally, OH-LIF measurements were conducted on flat stoichiometric CH4/air flames at high pressures. And both the numerical and experimental results illustrate that the pressure dependence of fluorescence yield is dominated, and the fluorescence yield is approximately inversely proportional to pressure. These results illustrate the physical processes of OH-LIF and provide useful guidelines for high-pressure application of OH-LIF.
Keywords:  laser-induced fluorescence      OH      high pressure      numerical analysis  
Received:  23 April 2020      Revised:  11 July 2020      Accepted manuscript online:  15 July 2020
PACS:  33.50.-j (Fluorescence and phosphorescence; radiationless transitions, quenching (intersystem crossing, internal conversion))  
  33.50.Dq (Fluorescence and phosphorescence spectra)  
  47.70.Pq (Flames; combustion)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 51976233 and 91641118).
Corresponding Authors:  Shuang Chen     E-mail:  chenshuang827@gamil.com

Cite this article: 

Xiaobo Tu(涂晓波), Linsen Wang(王林森), Xinhua Qi(齐新华), Bo Yan(闫博), Jinhe Mu(母金河), Shuang Chen(陈爽) Effects of temperature and pressure on OH laser-induced fluorescence exciting A-X (1,0) transition at high pressures 2020 Chin. Phys. B 29 093301

[1] Yang Z, Peng J, Yu X, Sun S, Meng S and Xu H 2016 Spectrosc. Lett. 49 482
[2] Kohse-Höinghaus K 1994 Prog. Energy Combust. Sci. 20 203
[3] Boxx I, Slabaugh C, Kutne P, Lucht R P and Meier W 2015 Proc. Combust. Inst. 35 3793
[4] Zhou B, Brackmann C, Li Z, Aldén M and Bai X 2015 Proc. Combust. Inst. 35 1409
[5] Lv L, Tan J and Zhu J 2017 Acta Astronaut. 139 258
[6] Chan C and Daily J W 2016 Chin. Phys. B 25 060703
[7] Chen S, Su T, Zheng Y, Chen L, Liu T, Li R and Yang F 2016 Chin. Phys. B 25 060703
[8] Matynia A, Idir M, Molet J, Roche C, de Persis S and Pillier L 2012 Appl. Phys. B 108 393
[9] Singla G, Scouflaire P, Rolon C and Candel S 2006 Combust. Flame 144 151
[10] Rahmann U, Bulter A, Lenhard U, Dusing R, Markus D, Brockhinke A and Kohse-Höinghaus K LASKIN – A Simulation Program for Time-Resolved LIF-Spectra, University of Bielefeld, Faculty of Chemistry, Physical Chemistry I, http://pc1.uni-bielefeld.de/~laskin
[11] Li Y and Gupta R 2003 Appl. Opt. 42 2226
[12] Luque J and Crosley D R 1998 J. Chem. Phys. 109 439
[13] Singla G, Scouflaire P, Rolon J C and Candel S 2007 J. Propul. Power 23 593
[14] Gordon I E, Rothman L S, Hill C, Kochanov R V ηl 2017 J. Quantum Spectrosc. Radiat. Transfer 203 3
[15] Goldman A, Schoenfeld W G, Goorvitch D, Chackerian C, Dothe H, Mélen F, Abrams M C and Selby J E A 1998 J. Quantum Spectrosc. Radiat. Transfer 59 453
[16] Davidson D F, Roehrig M, Petersen E L, Di Rosa M D and Hanson R K 1996 J. Quantum Spectrosc. Radiat. Transfer 55 755
[17] Kochanov R V, Gordon I E, Rothman L S, Wcislo P, Hill C and Wilzewski J S 2016 J. Quantum Spectrosc. Radiat. Transfer 177 15
[18] Luque J and Crosley D R LIFBASE: Database and spectral simulation (version 1.5), SRI International Report MP 99-0091999
[19] Goodwin D G, Speth R L, Moffat H K, Weber B W 2018 Cantera: An object-oriented software toolkit for chemical kinetics, thermodynamics and transport processes Version 2.4.0.
[20] Smith G P, Golden D M, Frenklach M, Moriarty N W, Eiteneer B, Goldenberg M, Bowman C T, Hanson R K, Song S, Gardiner W C, Jr V V L, Qin Z GRI-Mech 3.0. http://www.me.berkeley.edu/gri_mech/
[21] Kienle R, Lee M P and KohseH Inghaus K 1996 Appl. Phys. B 62 583
[22] Yan B, Chen L, Li M, Chen S, Gong C, Yang F, Wu Y, Zhou J and Mu J 2020 Chin. Phys. B 29 024701
[23] Tu X, Liu B, Wang L, Qi X, Yan B, Mu J, Chen S and Qin F 2016 Chin. Phys. B 25 100701
[24] Chen S, Su T, Li Z, Bai H, Yan B and Yang F 2016 Chin. Phys. B 25 100701
[1] Quantum dynamical resource theory under resource non-increasing framework
Si-Ren Yang(杨思忍) and Chang-Shui Yu(于长水). Chin. Phys. B, 2023, 32(4): 040305.
[2] Pressure-induced structural transition and low-temperature recovery of sodium pentazolate
Zitong Zhao(赵梓彤), Ran Liu(刘然), Linlin Guo(郭琳琳), Shuang Liu(刘爽), Minghong Sui(隋明宏), Bo Liu(刘波), Zhen Yao(姚震), Peng Wang(王鹏), and Bingbing Liu(刘冰冰). Chin. Phys. B, 2023, 32(4): 046202.
[3] Performance analysis of quantum key distribution using polarized coherent-states in free-space channel
Zengte Zheng(郑增特), Ziyang Chen(陈子扬), Luyu Huang(黄露雨),Xiangyu Wang(王翔宇), and Song Yu(喻松). Chin. Phys. B, 2023, 32(3): 030306.
[4] Low-resistance ohmic contacts on InAlN/GaN heterostructures with MOCVD-regrown n+-InGaN and mask-free regrowth process
Jingshu Guo(郭静姝), Jiejie Zhu(祝杰杰), Siyu Liu(刘思雨), Jielong Liu(刘捷龙), Jiahao Xu(徐佳豪), Weiwei Chen(陈伟伟), Yuwei Zhou(周雨威), Xu Zhao(赵旭), Minhan Mi(宓珉瀚), Mei Yang(杨眉), Xiaohua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2023, 32(3): 037303.
[5] Tightly focused properties of a partially coherent radially polarized power-exponent-phase vortex beam
Kang Chen(陈康), Zhi-Yuan Ma(马志远), and You-You Hu(胡友友). Chin. Phys. B, 2023, 32(2): 024208.
[6] Linear analysis of plasma pressure-driven mode in reversed shear cylindrical tokamak plasmas
Ding-Zong Zhang(张定宗), Xu-Ming Feng(冯旭铭), Jun Ma(马骏), Wen-Feng Guo(郭文峰), Yan-Qing Huang(黄艳清), and Hong-Bo Liu(刘洪波). Chin. Phys. B, 2023, 32(1): 015201.
[7] Pressure-induced stable structures and physical properties of Sr-Ge system
Shuai Han(韩帅), Shuai Duan(段帅), Yun-Xian Liu(刘云仙), Chao Wang(王超), Xin Chen(陈欣), Hai-Rui Sun(孙海瑞), and Xiao-Bing Liu(刘晓兵). Chin. Phys. B, 2023, 32(1): 016101.
[8] Transformation relation between coherence and entanglement for two-qubit states
Qing-Yun Zhou(周晴云), Xiao-Gang Fan(范小刚), Fa Zhao(赵发), Dong Wang(王栋), and Liu Ye(叶柳). Chin. Phys. B, 2023, 32(1): 010304.
[9] Enhancement of charging performance of quantum battery via quantum coherence of bath
Wen-Li Yu(于文莉), Yun Zhang(张允), Hai Li(李海), Guang-Fen Wei(魏广芬), Li-Ping Han(韩丽萍), Feng Tian(田峰), and Jian Zou(邹建). Chin. Phys. B, 2023, 32(1): 010302.
[10] Steering quantum nonlocalities of quantum dot system suffering from decoherence
Huan Yang(杨欢), Ling-Ling Xing(邢玲玲), Zhi-Yong Ding(丁智勇), Gang Zhang(张刚), and Liu Ye(叶柳). Chin. Phys. B, 2022, 31(9): 090302.
[11] Physical aspects of magnetized Jeffrey nanomaterial flow with irreversibility analysis
Fazal Haq, Muhammad Ijaz Khan, Sami Ullah Khan, Khadijah M Abualnaja, and M A El-Shorbagy. Chin. Phys. B, 2022, 31(8): 084703.
[12] Evolution of electrical conductivity and semiconductor to metal transition of iron oxides at extreme conditions
Yukai Zhuang(庄毓凯) and Qingyang Hu(胡清扬). Chin. Phys. B, 2022, 31(8): 089101.
[13] Structural evolution and bandgap modulation of layered β-GeSe2 single crystal under high pressure
Hengli Xie(谢恒立), Jiaxiang Wang(王家祥), Lingrui Wang(王玲瑞), Yong Yan(闫勇), Juan Guo(郭娟), Qilong Gao(高其龙), Mingju Chao(晁明举), Erjun Liang(梁二军), and Xiao Ren(任霄). Chin. Phys. B, 2022, 31(7): 076101.
[14] Structural evolution and molecular dissociation of H2S under high pressures
Wen-Ji Shen(沈文吉), Tian-Xiao Liang(梁天笑), Zhao Liu(刘召), Xin Wang(王鑫), De-Fang Duan(段德芳), Hong-Yu Yu(于洪雨), and Tian Cui(崔田). Chin. Phys. B, 2022, 31(7): 076102.
[15] High-pressure study of topological semimetals XCd2Sb2 (X = Eu and Yb)
Chuchu Zhu(朱楚楚), Hao Su(苏豪), Erjian Cheng(程二建), Lin Guo(郭琳), Binglin Pan(泮炳霖), Yeyu Huang(黄烨煜), Jiamin Ni(倪佳敏), Yanfeng Guo(郭艳峰), Xiaofan Yang(杨小帆), and Shiyan Li(李世燕). Chin. Phys. B, 2022, 31(7): 076201.
No Suggested Reading articles found!