ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS |
Prev
Next
|
|
|
Monolithic CEO-stabilization scheme-based frequency comb from an octave-spanning laser |
Zi-Jiao Yu(于子蛟)1, Hai-Nian Han(韩海年)1, Yang Xie(谢阳)2, Hao Teng(滕浩)1, Zhao-Hua Wang(王兆华)1, Zhi-Yi Wei(魏志义)1 |
1 Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
2 School of Physics and Optoelectronics Engineering, Xidian University, Xi'an 710071, China |
|
|
Abstract We demonstrate a carrier-envelope phase-stabilized octave-spanning oscillator based on the monolithic scheme. A wide output spectrum extending from 480 nm to 1050 nm was generated directly from an all-chirped mirror Ti:sapphire laser. After several improvements, the carrier-envelope offset (CEO) beat frequency accessed nearly 60 dB under a resolution of 100 kHz. Using a feedback system with 50-kHz bandwidth, we compressed the residual phase noise to 55 mrad (integrated from 1 Hz to 1 MHz) for the stabilized CEO, corresponding to 23-as timing jitter at the central wavelength of 790 nm. This is, to the best of our knowledge, the smallest timing jitter achieved among the existing octave-spanning laser based frequency combs.
|
Received: 18 November 2015
Revised: 01 December 2015
Accepted manuscript online:
|
PACS:
|
42.55.-f
|
(Lasers)
|
|
42.62.Eh
|
(Metrological applications; optical frequency synthesizers for precision spectroscopy)
|
|
42.65.Re
|
(Ultrafast processes; optical pulse generation and pulse compression)
|
|
42.62.Fi
|
(Laser spectroscopy)
|
|
Fund: Project supported by the National Basic Research Program of China (Grant No. 2012CB821304) and the National Natural Science Foundation of China (Grant Nos. 11078022 and 61378040). |
Corresponding Authors:
Hai-Nian Han, Zhi-Yi Wei
E-mail: hnhan@iphy.ac.cn;zywei@iphy.ac.cn
|
Cite this article:
Zi-Jiao Yu(于子蛟), Hai-Nian Han(韩海年), Yang Xie(谢阳), Hao Teng(滕浩), Zhao-Hua Wang(王兆华), Zhi-Yi Wei(魏志义) Monolithic CEO-stabilization scheme-based frequency comb from an octave-spanning laser 2016 Chin. Phys. B 25 044205
|
[1] |
Udem T, Holzwarth R and Hansch T W 2002 Nature 416 233
|
[2] |
Diddams S A 2010 J. Opt. Soc. Am. B 27 51
|
[3] |
Diddams S A, Hollberg L and Mbele V 2007 Nature 445 627
|
[4] |
Zhang L, Han H N, Zhang Q and Wei Z Y 2012 Chin. Phys. Lett. 29 114208
|
[5] |
Crespo H M, Birge J R, Falcao-Filho E L, Sander M Y, Benedick A and Kartner F X 2008 Opt. Lett. 33 833
|
[6] |
Jones D J, Diddams S A, Ranka J K, Stentz A, Windeler R S, Hall J L and Cundiff S T 2000 Science 288 635
|
[7] |
Mucke O D, Ell R, Winter A, Kim J W, Birge J R, Matos L and Kartner F X 2005 Opt. Express 13 5163
|
[8] |
Crespo H M, Birge J R, Sander M Y, Falcao-Filho E L, Benedick A and Kartner F X 2008 J. Opt. Soc. Am. B 25 147
|
[9] |
Fortier T M, Bartels A and Diddams S A 2006 Opt. Lett. 31 1011
|
[10] |
Chen L J, Benedick A J, Birge J R, Sander M Y and Kartner F X 2008 Opt. Express 16 20699
|
[11] |
Han H N, Wei Z Y, Zhang J and Nie Y X 2005 Acta Phys. Sin. 54 155 (in Chinese)
|
[12] |
Fuji T, Apolonski A and Krausz F 2004 Opt. Lett. 15 632
|
[13] |
Fuji T, Rauschenberger J, Apolonski A, Yakovlev V S, Tempea G, Udem T, Gohle C, Hansch T W, Lehnert W, Scherer M and Krausz F 2005 Opt. Lett. 30 332
|
[14] |
Fuji T, Rauschenberger J, Gohle C, Apoloski A, Udem T, Yakovlev V S, Tempea G, Hansch T W and Krausz F 2005 New J. Phys. 7 116
|
[15] |
Yu Z J, Han H H, Zhang L, Teng H, Wang Z H and Wei Z Y 2014 Appl. Phys. Express 7 102702
|
[16] |
Zhao Y Y, Wang P, Zhang W, Tian J R and Wei Z Y 2007 Sci. China-Phys. Mech. Astron. 50 261
|
[17] |
Zhang W, Han H N, Teng H and Wei Z Y 2009 Chin. Phys. B 18 1105
|
[18] |
Zhang Q, Zhao Y Y and Wei Z Y 2009 Chin. Phys. Lett. 26 044208
|
[19] |
Zhang W, Han H N, Zhao Y Y, Du Q and Wei Z Y 2009 Opt. Express 17 6059
|
[20] |
Sansone G, Benedetti E, Calegari F, Vozzi C, Avaldi L, Flammini R, Poletto L, Villoresi P, Altucci C, Velotta R, Stagira S, Silverstri S D and Nisoli M 2006 Science 314 443
|
[21] |
Smith N J, Blow K J and Andonovic I 1992 IEEE J. Lightwave Technol. 10 1329
|
[22] |
Hoffmann M, Schilt S and Sudmeyer T 2013 Opt. Express 21 30054
|
[23] |
Han H N, Zhang W, Tong J J, Wang Y H, Wang P, Wei Z Y, Li D H, Shen N C, Nie Y X and Dong T Q 2007 Acta Phys. Sin. 56 291 (in Chinese)
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|