Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(4): 044205    DOI: 10.1088/1674-1056/25/4/044205

Monolithic CEO-stabilization scheme-based frequency comb from an octave-spanning laser

Zi-Jiao Yu(于子蛟)1, Hai-Nian Han(韩海年)1, Yang Xie(谢阳)2, Hao Teng(滕浩)1, Zhao-Hua Wang(王兆华)1, Zhi-Yi Wei(魏志义)1
1 Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
2 School of Physics and Optoelectronics Engineering, Xidian University, Xi'an 710071, China

We demonstrate a carrier-envelope phase-stabilized octave-spanning oscillator based on the monolithic scheme. A wide output spectrum extending from 480 nm to 1050 nm was generated directly from an all-chirped mirror Ti:sapphire laser. After several improvements, the carrier-envelope offset (CEO) beat frequency accessed nearly 60 dB under a resolution of 100 kHz. Using a feedback system with 50-kHz bandwidth, we compressed the residual phase noise to 55 mrad (integrated from 1 Hz to 1 MHz) for the stabilized CEO, corresponding to 23-as timing jitter at the central wavelength of 790 nm. This is, to the best of our knowledge, the smallest timing jitter achieved among the existing octave-spanning laser based frequency combs.

Keywords:  octave-spanning laser      optical frequency comb      carrier-envelope offset      low phase noise  
Received:  18 November 2015      Revised:  01 December 2015      Accepted manuscript online: 
PACS:  42.55.-f (Lasers)  
  42.62.Eh (Metrological applications; optical frequency synthesizers for precision spectroscopy)  
  42.65.Re (Ultrafast processes; optical pulse generation and pulse compression)  
  42.62.Fi (Laser spectroscopy)  

Project supported by the National Basic Research Program of China (Grant No. 2012CB821304) and the National Natural Science Foundation of China (Grant Nos. 11078022 and 61378040).

Corresponding Authors:  Hai-Nian Han, Zhi-Yi Wei     E-mail:;

Cite this article: 

Zi-Jiao Yu(于子蛟), Hai-Nian Han(韩海年), Yang Xie(谢阳), Hao Teng(滕浩), Zhao-Hua Wang(王兆华), Zhi-Yi Wei(魏志义) Monolithic CEO-stabilization scheme-based frequency comb from an octave-spanning laser 2016 Chin. Phys. B 25 044205

[1] Udem T, Holzwarth R and Hansch T W 2002 Nature 416 233
[2] Diddams S A 2010 J. Opt. Soc. Am. B 27 51
[3] Diddams S A, Hollberg L and Mbele V 2007 Nature 445 627
[4] Zhang L, Han H N, Zhang Q and Wei Z Y 2012 Chin. Phys. Lett. 29 114208
[5] Crespo H M, Birge J R, Falcao-Filho E L, Sander M Y, Benedick A and Kartner F X 2008 Opt. Lett. 33 833
[6] Jones D J, Diddams S A, Ranka J K, Stentz A, Windeler R S, Hall J L and Cundiff S T 2000 Science 288 635
[7] Mucke O D, Ell R, Winter A, Kim J W, Birge J R, Matos L and Kartner F X 2005 Opt. Express 13 5163
[8] Crespo H M, Birge J R, Sander M Y, Falcao-Filho E L, Benedick A and Kartner F X 2008 J. Opt. Soc. Am. B 25 147
[9] Fortier T M, Bartels A and Diddams S A 2006 Opt. Lett. 31 1011
[10] Chen L J, Benedick A J, Birge J R, Sander M Y and Kartner F X 2008 Opt. Express 16 20699
[11] Han H N, Wei Z Y, Zhang J and Nie Y X 2005 Acta Phys. Sin. 54 155 (in Chinese)
[12] Fuji T, Apolonski A and Krausz F 2004 Opt. Lett. 15 632
[13] Fuji T, Rauschenberger J, Apolonski A, Yakovlev V S, Tempea G, Udem T, Gohle C, Hansch T W, Lehnert W, Scherer M and Krausz F 2005 Opt. Lett. 30 332
[14] Fuji T, Rauschenberger J, Gohle C, Apoloski A, Udem T, Yakovlev V S, Tempea G, Hansch T W and Krausz F 2005 New J. Phys. 7 116
[15] Yu Z J, Han H H, Zhang L, Teng H, Wang Z H and Wei Z Y 2014 Appl. Phys. Express 7 102702
[16] Zhao Y Y, Wang P, Zhang W, Tian J R and Wei Z Y 2007 Sci. China-Phys. Mech. Astron. 50 261
[17] Zhang W, Han H N, Teng H and Wei Z Y 2009 Chin. Phys. B 18 1105
[18] Zhang Q, Zhao Y Y and Wei Z Y 2009 Chin. Phys. Lett. 26 044208
[19] Zhang W, Han H N, Zhao Y Y, Du Q and Wei Z Y 2009 Opt. Express 17 6059
[20] Sansone G, Benedetti E, Calegari F, Vozzi C, Avaldi L, Flammini R, Poletto L, Villoresi P, Altucci C, Velotta R, Stagira S, Silverstri S D and Nisoli M 2006 Science 314 443
[21] Smith N J, Blow K J and Andonovic I 1992 IEEE J. Lightwave Technol. 10 1329
[22] Hoffmann M, Schilt S and Sudmeyer T 2013 Opt. Express 21 30054
[23] Han H N, Zhang W, Tong J J, Wang Y H, Wang P, Wei Z Y, Li D H, Shen N C, Nie Y X and Dong T Q 2007 Acta Phys. Sin. 56 291 (in Chinese)
[1] Numerical study of converting beat-note signals of dual-frequency lasers to optical frequency combs by optical injection locking of semiconductor lasers
Chenhao Liu(刘晨浩), Haoshu Jin(靳昊澍), Hui Liu(刘辉), and Jintao Bai(白晋涛). Chin. Phys. B, 2022, 31(8): 084205.
[2] Precise determination of characteristic laser frequencies by an Er-doped fiber optical frequency comb
Shiying Cao(曹士英), Yi Han(韩羿), Yongjin Ding(丁永今), Baike Lin(林百科), and Zhanjun Fang(方占军). Chin. Phys. B, 2022, 31(7): 074207.
[3] All polarization-maintaining Er:fiber-based optical frequency comb for frequency comparison of optical clocks
Pan Zhang(张攀), Yan-Yan Zhang(张颜艳), Ming-Kun Li(李铭坤), Bing-Jie Rao(饶冰洁), Lu-Lu Yan(闫露露), Fa-Xi Chen(陈法喜), Xiao-Fei Zhang(张晓斐), Qun-Feng Chen(陈群峰), Hai-Feng Jiang(姜海峰), and Shou-Gang Zhang(张首刚). Chin. Phys. B, 2022, 31(5): 054210.
[4] Raman lasing and other nonlinear effects based on ultrahigh-Q CaF2 optical resonator
Tong Xing(邢彤), Enbo Xing(邢恩博), Tao Jia(贾涛), Jianglong Li(李江龙), Jiamin Rong(戎佳敏), Yanru Zhou(周彦汝), Wenyao Liu(刘文耀), Jun Tang(唐军), and Jun Liu(刘俊). Chin. Phys. B, 2022, 31(10): 104204.
[5] Mid-infrared supercontinuum and optical frequency comb generations in a multimode tellurite photonic crystal fiber
Xu Han(韩旭), Ying Han(韩颖), Chao Mei(梅超), Jing-Zhao Guan(管景昭), Yan Wang(王彦), Lin Gong(龚琳), Jin-Hui Yuan(苑金辉), and Chong-Xiu Yu(余重秀). Chin. Phys. B, 2021, 30(9): 094207.
[6] Eigenvalue spectrum analysis for temporal signals of Kerr optical frequency combs based on nonlinear Fourier transform
Jia Wang(王佳), Ai-Guo Sheng(盛爱国), Xin Huang(黄鑫), Rong-Yu Li(李荣玉), Guang-Qiang He(何广强). Chin. Phys. B, 2020, 29(3): 034207.
[7] Femtosecond enhancement cavity with kilowatt average power
Jin Zhang(张津), Lin-Qiang Hua(华林强), Shao-Gang Yu(余少刚), Zhong Chen(陈忠), Xiao-Jun Liu(柳晓军). Chin. Phys. B, 2019, 28(4): 044206.
[8] Photonic generation of RF and microwave signal with relative frequency instability of 10-15
Lu-Lu Yan(闫露露), Wen-Yu Zhao(赵文宇), Yan-Yan Zhang(张颜艳), Zhao-Yang Tai(邰朝阳), Pan Zhang(张攀), Bing-Jie Rao(饶冰洁), Kai Ning(宁凯), Xiao-Fei Zhang(张晓斐), Wen-Ge Guo(郭文阁), Shou-Gang Zhang(张首刚), Hai-Feng Jiang(姜海峰). Chin. Phys. B, 2018, 27(3): 030601.
[9] Spectral distortion of dual-comb spectrometry due to repetition rate fluctuation
Hong-Lei Yang(杨宏雷), Hao-Yun Wei(尉昊赟), Yan Li(李岩). Chin. Phys. B, 2016, 25(4): 044207.
[10] Frequency-stabilized Yb:fiber comb with a tapered single-mode fiber
Yang Xie(谢阳), Hai-Nian Han(韩海年), Long Zhang(张龙), Zi-Jiao Yu(于子蛟), Zheng Zhu(朱政), Lei Hou(侯磊), Li-Hui Pang(庞利辉), Zhi-Yi Wei(魏志义). Chin. Phys. B, 2016, 25(4): 044208.
[11] A proposal for the generation of optical frequency comb in temperature insensitive microcavity
Xun Lei(雷勋), D an Bian(边丹丹), Shaowu Chen(陈少武). Chin. Phys. B, 2016, 25(11): 114214.
[12] Coherence transfer from 1064 nm to 578 nm using an optically referenced frequency comb
Fang Su (方苏), Jiang Yan-Yi (蒋燕义), Chen Hai-Qin (陈海琴), Yao Yuan (姚远), Bi Zhi-Yi (毕志毅), Ma Long-Sheng (马龙生). Chin. Phys. B, 2015, 24(7): 074202.
[13] Two-photon spectrum of 87Rb using optical frequency comb
Wang Li-Rong (汪丽蓉), Zhang Yi-Chi (张一驰), Xiang Shao-Shan (向少山), Cao Shu-Kai (曹书凯), Xiao Lian-Tuan (肖连团), Jia Suo-Tang (贾锁堂). Chin. Phys. B, 2015, 24(6): 063201.
[14] A long-term frequency-stabilized erbium-fiber-laser-based optical frequency comb with an intra-cavity electro-optic modulator
Zhang Yan-Yan (张颜艳), Yan Lu-Lu (闫露露), Zhao Wen-Yu (赵文宇), Meng Sen (孟森), Fan Song-Tao (樊松涛), Zhang Long (张龙), Guo Wen-Ge (郭文阁), Zhang Shou-Gang (张首刚), Jiang Hai-Feng (姜海峰). Chin. Phys. B, 2015, 24(6): 064209.
[15] Pump-induced carrier envelope offset frequency dynamics and stabilization of an Yb-doped fiber frequency comb
Zhao Jian (赵健), Li Wen-Xue (李文雪), Yang Kang-Wen (杨康文), Shen Xu-Ling (沈旭玲), Bai Dong-Bi (白东碧), Chen Xiu-Liang (陈修亮), Zeng He-Ping (曾和平). Chin. Phys. B, 2014, 23(12): 124206.
No Suggested Reading articles found!