Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(8): 084205    DOI: 10.1088/1674-1056/ab8ac4
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

High efficiency sub-nanosecond electro-optical Q-switched laser operating at kilohertz repetition frequency

Xin Zhao(赵鑫)1, Zheng Song(宋政)1, Yuan-Ji Li(李渊骥)1,2, Jin-Xia Feng(冯晋霞)1,2, Kuan-Shou Zhang(张宽收)1,2
1 State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Opto-Electronics, Shanxi University, Taiyuan 030006, China;
2 Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China
Abstract  Based on a theoretical model of Q-switched laser with the influences of the driving signal sent to the Pockels cell and the doping concentration of the gain medium taken into account, a method of achieving high energy sub-nanosecond Q-switched lasers is proposed and verified in experiment. When a Nd:YVO4 crystal with a doping concentration of 0.7 at.% is used as a gain medium and a driving signal with the optimal high-level voltage is applied to the Pockels cell, a stable single-transverse-mode electro-optical Q-switched laser with a pulse width of 0.77 ns and a pulse energy of 1.04 mJ operating at the pulse repetition frequency of 1 kHz is achieved. The precise tuning of the pulse width is also demonstrated.
Keywords:  milijoule level sub-nanosecond laser      kilohertz repetition frequency      doping concentration of laser crystal      tunable pulse width  
Received:  29 February 2020      Revised:  23 March 2020      Accepted manuscript online: 
PACS:  42.60.By (Design of specific laser systems)  
  42.60.Gd (Q-switching)  
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2017YFB0405203) and the Shanxi "1331 Project" Key Subjects Construction, China (Grant No. 1331KSC).
Corresponding Authors:  Yuan-Ji Li     E-mail:  liyuanji@sxu.edu.cn

Cite this article: 

Xin Zhao(赵鑫), Zheng Song(宋政), Yuan-Ji Li(李渊骥), Jin-Xia Feng(冯晋霞), Kuan-Shou Zhang(张宽收) High efficiency sub-nanosecond electro-optical Q-switched laser operating at kilohertz repetition frequency 2020 Chin. Phys. B 29 084205

[1] Markus T, Neumann T, Martino A, Abdalati W, Brunt K, Csatho B, Farrell S, Fricker H, Gardner A, Harding D, Jasinski M, Kwok R, Magruder L, Lubin D, Luthcke S, Morison J, Nelson R, Neuenschwander A, Palm S, Popescu S, Shum C K, Schutz B E, Smith B, Yangak Y K and Zwallya J 2017 Remote Sens. Environ. 190 260
[2] Steven R T, Dexter A and Bunch J 2016 Methods 104 101
[3] Chambonneau M, Li Q, Chanal M, Sanner N and Grojo D 2016 Opt. Lett. 41 4875
[4] Ishizuki H and Taira T 2017 Opt. Express 25 2369
[5] Lim H H and Taira T 2017 Opt. Express 25 6302
[6] Demos S G, Negres R A, Raman R N, Shen N, Rubenchik A M and Matthews M J 2016 Opt. Express 24 7792
[7] Zhang L H, Sun L J and Ma X H 2013 Laser Phys. Lett. 10 055601
[8] James J, Murukeshan V M, Sathiyamoorthy K and Woh L S 2014 Laser Phys. 24 085608
[9] Zou Y, Hui Y L, Cai J L, Guo N, Jiang M H, Lei H and Li Q 2017 Chin. Phys. B 26 094206
[10] Deyra L, Martial I, Balembois F, Diderjean J and Georges P 2013 Appl. Phys. B 111 573
[11] Lin Y N, Fang W T, Gu C and Xu L X 2016 Chin. Phys. Lett. 33 054203
[12] Zhang L, Zhang D and Li J Z 2013 Chin. Phys. B 22 074207
[13] Zayhowski J J and Dill C 1995 Opt. Lett. 20 716
[14] Horiuchi R, Adachi K, Watanabe G, Tei K and Yamaguchi S 2008 Opt. Express 16 16729
[15] Liu Q, Meng J Q, Zu J F, Jiang J, Chen S L and Chen W B 2017 Chin. J. Lasers 44 0601005(in Chinese)
[16] Chen X Y, Wu J, Wu C T, Sun H T, Yu Y J and Jin G Y 2015 Laser Phys. 25 045003
[17] Yin X L, Jiang M H, Sun Z, Hui Y L, Lei H and Li Q 2017 Appl. Opt. 56 2893
[18] McDonagh L, Wallenstein R and Knappe R 2006 Opt. Lett. 31 3303
[19] Liu K, He L J, Bo Y, Wang X J, Shen Y, Liu Z, Yuan L, Peng Q J, Cui D F and Xu Z Y 2017 Opt. Lett. 42 2467
[20] Li T, Zhao S Z, Zhuo Z, Yang K J, Li G Q and Li D C 2009 J. Opt. Soc. Am. B 26 1146
[21] Li S X, Li D C, Zhao S Z, Li G Q, Li X Y and Qiao B 2016 Opt. Express 24 4022
[22] Zhang H J, Zhao S Z, Yang K J, Li G Q, Li D C, Zhao J and Wang Y G 2013 Appl. Opt. 52 6776
[23] Coyle D B, Guerra D V and Kay R B 1995 J. Phys. D 28 452
[24] Degnan J J 1989 IEEE J. Quantum Electron. 25 214
[25] Chen Y F, Lee L J, Huang T M and Wang C L 1999 Opt. Commun. 163 198
[26] Mukhopadhyay P K, George J, Sharma S K, Ranganathan K and Nathan T P S 2002 Opt. Laser Technol. 34 357
[27] Turri G, Jenssen H P, Cornacchia F, Tonelli M and Bass M 2009 J. Opt. Soc. Am. B 26 2084
[28] Zhao X, Li Y J, Feng J X and Zhang K S 2017 Chin. J. Lasers 44 0501006(in Chinese)
[1] The 266-nm ultraviolet-beam generation of all-fiberized super-large-mode-area narrow-linewidth nanosecond amplifier with tunable pulse width and repetition rate
Shun Li(李舜), Ping-Xue Li(李平雪), Min Yang(杨敏), Ke-Xin Yu(于可新), Yun-Chen Zhu(朱云晨), Xue-Yan Dong(董雪岩), and Chuan-Fei Yao(姚传飞). Chin. Phys. B, 2022, 31(3): 034207.
[2] All-fiberized very-large-mode-area Yb-doped fiber based high-peak-power narrow-linewidth nanosecond amplifier with tunable pulse width and repetition rate
Min Yang(杨敏), Ping-Xue Li(李平雪), Dong-Sheng Wang(王东生), Ke-Xin Yu(于可新), Xue-Yan Dong(董雪岩), Ting-Ting Wang(王婷婷), Chuan-Fei Yao(姚传飞), and Wei-Xin Yang(杨卫鑫). Chin. Phys. B, 2020, 29(11): 114206.
No Suggested Reading articles found!