Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(8): 087302    DOI: 10.1088/1674-1056/ab9284

Optical absorption in asymmetrical Gaussian potential quantum dot under the application of an electric field

Xue-Chao Li(李学超), Chun-Bao Ye(叶纯宝), Juan Gao(高娟), Bing Wang(王兵)
Optoelectronics Physics, Anhui University of Science and Technology, Huainan 232001, China
Abstract  We theoretically investigate the optical absorption coefficient (OAC) in asymmetrical Gaussian potential quantum dots subject to an applied electric field. Confined wave functions together with energies of electron energies in an effective mass approximation framework are obtained. The OAC is expressed according to the iterative method and the compact-density-matrix approach. Based on our results, OAC is sensitively dependent on external electric field together with the incident optical intensity. Additionally, peak shifts into greater energy as the quantum dot radius decrease. Moreover, the parameters of Gaussian potential have a significant influence on the OAC.
Keywords:  electric field      optical absorption      quantum dot  
Received:  23 February 2020      Revised:  13 April 2020      Accepted manuscript online: 
PACS:  73.21.La (Quantum dots)  
  94.20.Ss (Electric fields; current system)  
  33.80.-b (Photon interactions with molecules)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 51702003, 61775087, and 11674312), the Provincial Foundation for Excellent Top Talents of Colleges and Universities of Anhui Province of China (Grant No. gxgwfx2019016), the Anhui Provincial Natural Science Foundation, China (Grant Nos. 1808085ME130 and 1508085QF140), University Outstanding Young Talents Support Program Fund (Grant No. gxyqZD2018039).
Corresponding Authors:  Chun-Bao Ye     E-mail:

Cite this article: 

Xue-Chao Li(李学超), Chun-Bao Ye(叶纯宝), Juan Gao(高娟), Bing Wang(王兵) Optical absorption in asymmetrical Gaussian potential quantum dot under the application of an electric field 2020 Chin. Phys. B 29 087302

[1] Rossetti R, Nakahara S and Brus L E 1983 J. Chem. Phys. 79 1086
[2] Murray C B, Norris D J and Bawendi M G 1993 J. Am. Chem. Soc. 115 8706
[3] Chang K and Xia J B 1998 J. Appl. Phys. 84 1454
[4] Chang K and Xia J B 1998 Phys. Rev. B 57 9780
[5] Chang K and Xia J B 1997 Solid State Commun. 104 351
[6] Li S S, Chang K and Xia J B 2005 Phys. Rev. B 71 155301
[7] Zhang C J, Min C and Zhao B 2019 Phys. Lett. A 383 125983
[8] Çakir B, Yakar Y and Özmen A 2012 J. Lumin. 132 2659
[9] Zhang C J and Liu C P 2019 Opt. Express 27 37034
[10] Zhang C J and Liu C P 2019 Laser Phys. Lett. 17 125401
[11] Bejan D 2016 Phys. Lett. A 380 3836
[12] Ju K K, Guo C X and Pan X Y 2017 Chin. Phys. B 26 097103
[13] Bahramiyan H 2018 Opt. Mater. 75 187
[14] Kasapoglu E, Ungan F, Duque C A, Yesilgul U, Mora-Ramos M E, Sari H and Sökmen I 2014 Physica E 61 107
[15] Sari H, Yesilgul U, Ungan F, Sakiroglu S, Kasapoglu E and Sökmen I 2017 Chem. Phys. 487 11
[16] Aalu B 2019 Physica B 575 411699
[17] Mandal A, Sarkai A, Ghosh A P and Ghosh M 2015 Chem. Phys. 463 149
[18] Zhang Z Z, Zou L L, Liu C L and Yuan J H 2015 Superlatt. Microstruct. 85 385
[19] Çakir B, Yakar Y and Özmen A 2017 Physica B 510 86
[20] Ghajarpour N S and Karimi M J 2018 Opt. Mater. 82 75
[21] Al E B, Kasapoglu E, Sakiroglu S, Duque C A and Sökmen I 2018 J. Mol. Struct. 1157 288
[22] Zhang C J and Liu C P 2016 Phys. Lett. A 380 3233
[23] Chen Y Y, Feng X L and Liu C P 2016 Phys. Rev. Lett. 117 023901
[24] Zhang C J, Wu E, Gu M L, Hu Z F and Liu C P 2017 Phys. Rev. A 96 033854
[25] Zhang C J, Wu E, Gu M L, Hu Z F and Liu C P 2017 Opt. Express 25 21241
[26] Xie W F 2004 Commun. Theor. Phys. 42 151
[27] Wu J H, Guo K X and Liu G 2014 Physica B 446 59
[28] Kirak M, Yilmaz S, Şahin M and Gençaslan M 2011 J. Appl. Phys. 109 094309
[29] Karimi M J, Keshavarz A and Poostforush A 2011 Superlatt. Microstruct. 49 441
[30] Guo A X and Du J F 2013 Superlatt. Microstruct. 64 158
[31] Ungan F, Restrepo R L, Mora-Ramos M E, Morales A L and Duque C A 2014 Physica B 434 26
[1] Adaptive genetic algorithm-based design of gamma-graphyne nanoribbon incorporating diamond-shaped segment with high thermoelectric conversion efficiency
Jingyuan Lu(陆静远), Chunfeng Cui(崔春凤), Tao Ouyang(欧阳滔), Jin Li(李金), Chaoyu He(何朝宇), Chao Tang(唐超), and Jianxin Zhong(钟建新). Chin. Phys. B, 2023, 32(4): 048401.
[2] Electron beam pumping improves the conversion efficiency of low-frequency photons radiated by perovskite quantum dots
Peng Du(杜鹏), Yining Mu(母一宁), Hang Ren(任航), Idelfonso Tafur Monroy, Yan-Zheng Li(李彦正), Hai-Bo Fan(樊海波), Shuai Wang(王帅), Makram Ibrahim, and Dong Liang(梁栋). Chin. Phys. B, 2023, 32(4): 048704.
[3] High-fidelity universal quantum gates for hybrid systems via the practical photon scattering
Jun-Wen Luo(罗竣文) and Guan-Yu Wang(王冠玉). Chin. Phys. B, 2023, 32(3): 030303.
[4] Electrical manipulation of a hole ‘spin’-orbit qubit in nanowire quantum dot: The nontrivial magnetic field effects
Rui Li(李睿) and Hang Zhang(张航). Chin. Phys. B, 2023, 32(3): 030308.
[5] Thermoelectric signature of Majorana zero modes in a T-typed double-quantum-dot structure
Cong Wang(王聪) and Xiao-Qi Wang(王晓琦). Chin. Phys. B, 2023, 32(3): 037304.
[6] Ion migration in metal halide perovskite QLEDs and its inhibition
Yuhui Dong(董宇辉), Danni Yan(严丹妮), Shuai Yang(杨帅), Naiwei Wei(魏乃炜),Yousheng Zou(邹友生), and Haibo Zeng(曾海波). Chin. Phys. B, 2023, 32(1): 018507.
[7] Nonlinear optical rectification of GaAs/Ga1-xAlxAs quantum dots with Hulthén plus Hellmann confining potential
Yi-Ming Duan(段一名) and Xue-Chao Li(李学超). Chin. Phys. B, 2023, 32(1): 017303.
[8] Steering quantum nonlocalities of quantum dot system suffering from decoherence
Huan Yang(杨欢), Ling-Ling Xing(邢玲玲), Zhi-Yong Ding(丁智勇), Gang Zhang(张刚), and Liu Ye(叶柳). Chin. Phys. B, 2022, 31(9): 090302.
[9] High-quality CdS quantum dots sensitized ZnO nanotube array films for superior photoelectrochemical performance
Qian-Qian Gong(宫倩倩), Yun-Long Zhao(赵云龙), Qi Zhang(张奇), Chun-Yong Hu(胡春永), Teng-Fei Liu(刘腾飞), Hai-Feng Zhang(张海峰), Guang-Chao Yin(尹广超), and Mei-Ling Sun(孙美玲). Chin. Phys. B, 2022, 31(9): 098103.
[10] Theoretical study of M6X2 and M6XX' structure (M = Au, Ag; X,X' = S, Se): Electronic and optical properties, ability of photocatalytic water splitting, and tunable properties under biaxial strain
Jiaqi Li(李嘉琪), Xinlu Cheng(程新路), and Hong Zhang(张红). Chin. Phys. B, 2022, 31(9): 097101.
[11] Large Seebeck coefficient resulting from chiral interactions in triangular triple quantum dots
Yi-Ming Liu(刘一铭) and Jian-Hua Wei(魏建华). Chin. Phys. B, 2022, 31(9): 097201.
[12] Dynamic transport characteristics of side-coupled double-quantum-impurity systems
Yi-Jie Wang(王一杰) and Jian-Hua Wei(魏建华). Chin. Phys. B, 2022, 31(9): 097305.
[13] Wake-up effect in Hf0.4Zr0.6O2 ferroelectric thin-film capacitors under a cycling electric field
Yilin Li(李屹林), Hui Zhu(朱慧), Rui Li(李锐), Jie Liu(柳杰), Jinjuan Xiang(项金娟), Na Xie(解娜), Zeng Huang(黄增), Zhixuan Fang(方志轩), Xing Liu(刘行), and Lixing Zhou(周丽星). Chin. Phys. B, 2022, 31(8): 088502.
[14] Enhancing performance of GaN-based LDs by using GaN/InGaN asymmetric lower waveguide layers
Wen-Jie Wang(王文杰), Ming-Le Liao(廖明乐), Jun Yuan(袁浚), Si-Yuan Luo(罗思源), and Feng Huang(黄锋). Chin. Phys. B, 2022, 31(7): 074206.
[15] Modeling and numerical simulation of electrical and optical characteristics of a quantum dot light-emitting diode based on the hopping mobility model: Influence of quantum dot concentration
Pezhman Sheykholeslami-Nasab, Mahdi Davoudi-Darareh, and Mohammad Hassan Yousefi. Chin. Phys. B, 2022, 31(6): 068504.
No Suggested Reading articles found!