|
|
Structural and optical characteristic features of RF sputtered CdS/ZnO thin films |
Ateyyah M Al-Baradi1, Fatimah A Altowairqi1, A A Atta1,2, Ali Badawi1, Saud A Algarni1, Abdulraheem S A Almalki3, A M Hassanien4, A Alodhayb5, A M Kamal6, M M El-Nahass2 |
1 Department of Physics, Faculty of Science, Taif University, Taif 21974, Saudi Arabia;
2 Department of Physics, Faculty of Education, Ain Shams University, Roxy 11757, Cairo, Egypt;
3 Department of Chemistry, Faculty of Science, Taif University, Taif, Saudi Arabia;
4 Department of Physics, College of Science and Humanities-Al Quwaiiyah, Shaqra University, Saudi Arabia;
5 Research Chair for Tribology, Surface, and Interface Sciences, Department of Physics and Astronomy, College of Science, King Saud University, Riyadh 11451, Saudi Arabia;
6 Department of Physics and Astronomy, College of Science, King Saud University, Riyadh 11451, Saudi Arabia |
|
|
Abstract In this study, CdS/ZnO (2:3 mol%) thin films are successfully deposited on quartz substrates by using the sputtering technique. Good images on the structural and optical characteristic features of CdS/ZnO thin films before and after annealing are obtained. The CdS/ZnO thin films are annealed respectively at temperatures of 373 K, 473 K, and 573 K and the structural features are examined by XRD, ATR-FTIR, and FESEM. The optical properties of CdS/ZnO thin films such as refractive indices, absorption coefficients, optical band gap energy values, Urbach energy values, lattice dielectric constants, and high frequency dielectric constants are determined from spectrophotometer data recorded over the spectral range of 300 nm-2500 nm. Dispersion parameters are investigated by using a single-oscillator model. Photoluminescence spectra of CdS/ZnO thin films show an overall decrease in their intensity peaks after annealing. The third-order nonlinear optical parameter, and nonlinear refractive index are also estimated.
|
Received: 27 March 2020
Revised: 26 April 2020
Accepted manuscript online:
|
PACS:
|
07.79.-v
|
(Scanning probe microscopes and components)
|
|
73.61.-r
|
(Electrical properties of specific thin films)
|
|
Fund: Project supported by the Deanship of Scientific Research, Taif University, Kingdom of Saudi Arabia (Grant No. 1-440-6136). |
Corresponding Authors:
Ateyyah M Al-Baradi
E-mail: thobyani@yahoo.com
|
Cite this article:
Ateyyah M Al-Baradi, Fatimah A Altowairqi, A A Atta, Ali Badawi, Saud A Algarni, Abdulraheem S A Almalki, A M Hassanien, A Alodhayb, A M Kamal, M M El-Nahass Structural and optical characteristic features of RF sputtered CdS/ZnO thin films 2020 Chin. Phys. B 29 080702
|
[1] |
Rajput J K and Purohit L P 2016 Nanosci. Technol. 3 1
|
[2] |
Nwanya A C, Deshmukh P R, Osujib R U, Maazad M, Lokhande C D and Ezema F I 2015 Sens. Actuat. B:Chem. 206 671
|
[3] |
McCool N S, Swierk J R, Nemes C T, Schmuttenmaer C A and Mallouk T E 2016 J. Phys. Chem. Lett. 7 2930
|
[4] |
Kuang W J, Li Q, Sun Y, Chen J and Tolner H 2016 Mater. Lett. 178 27
|
[5] |
Wang L, Wei H, Fan Y, Liu X and Zhan J 2009 Nanoscale Res. Lett. 4 558
|
[6] |
Sikarwar S, Yadav B C, Singh S, Dzhardimalieva G I, Pomogailo S I, Golubeva N D and Pomogailo A D 2016 Sensor Actuat. B:Chem. 232 283
|
[7] |
Xiong W 2016 Superlattice Microstruc. 98 158
|
[8] |
Vishwakarma A K and Yadava L 2018 Vacuum 155 214
|
[9] |
Fang F, Zhao D X, Li B H, Zhang Z Z, Zhang J Y and Shen D Z 2008 Appl. Phys. Lett. 93 233115
|
[10] |
Vasa P, Taneja P, Ayyub P, Singh B P and Banerjee R 2002 J. Phys.:Condens. Matter 14 281
|
[11] |
Wang X, Liu G, Lu G Q and Cheng H M 2010 Int. J. Hydrogen Energy 35 8199
|
[12] |
Sharma M and Jeevanandam P 2012 Mater. Res. Bull. 47 1755
|
[13] |
Kozhevnikova N S, Gyrdasova O I, Vorokh A S and Baklanova I V 2014 Nanosyst. Phys. Chem. Math. 5 579
|
[14] |
Velanganni S, Pravinraj S, Immanuel P and Thiruneelakandan R 2018 Physica B 534 56
|
[15] |
Meng X Q, Zhao D X, Zhang J Y, Shen D Z, Lu Y M, Fan X W and Wang X H 2007 Mater. Lett. 61 3535
|
[16] |
Rajeshwar K and de Tacconi N R 2001 Chem. Mater. 139 2765
|
[17] |
Alivisatos A P 1996 Science 271 933
|
[18] |
Anderson M A, Gorer S and Penner R M 1997 J. Phys. Chem. B 101 5895
|
[19] |
Caruso F 2001 Adv. Mater. 13 11
|
[20] |
Thambidurai M, Muthukumarasamy N, Arul N S, Agilan S and Balasundaraprabhu R 2011 J. Nanopart. Res. 13 3267
|
[21] |
Yang X, Yang Q, Hu Z, Guo S, Li Y, Sun J, Xu N and Wu J 2015 Sol. Energy Mater. Sol. Cells 137 169
|
[22] |
Nayak J, Sahu S N, Kasuya J and Nozaki S 2008 Appl. Surf. Sci. 254 7215
|
[23] |
Gao T, Li Q and Wang T 2005 Chem. Mater. 17 887
|
[24] |
Du N, Zhang H, Chen B, Wu J and Yang D 2007 Nanotechnology 18 115619
|
[25] |
Panda S K, Chakrabarti S, Satpati B, Satyam P V and Chaudhuri S 2004 J. Phys. D:Appl. Phys. 37 628
|
[26] |
Vasa P, Singh B P and Ayyub P 2005 J. Phys.:Condens. Matter 17 189
|
[27] |
Vanalakar S A, Mali S S, Suryawanshi M P, Tarwal N L, Jadhav P R, Agawane G L, Gurav K V, Kamble A S, Shin S W, Moholkar A V, Kim J Y, Kim J H and Patil P S 2014 Opt. Mater. 37 766
|
[28] |
Adegoke K A, Iqbal M, Louis H and Bello O S 2019 Mater. Sci. Energy Technol. 2 329
|
[29] |
El-Nahass M M 1992 J. Mater. Sci. 27 6597
|
[30] |
Di Giulio M, Micocci G, Rella R, Siciliano P and Tepore A 1993 Phys. Status Solidi A 136 K101
|
[31] |
El-Nahass M M, Atta A A, Abd El-Raheem M M and Hassanien A M 2014 J. Alloys Compd. 585 1
|
[32] |
Hassanien A M, Atta A A, El-Nahass M M, Ahmed S I, Shaltout A A, Al-Baradi A M, Alodhayb A and Kamal A M 2020 Opt. Quantum Electron. 52 194
|
[33] |
Konstantinov I, Babeva T and Kitova S 1998 Appl. Opt. 37 4260
|
[34] |
Hong R Y, Li J H, Chen L L, Liu D Q, Li H Z, Zheng Y and Ding J 2009 Powder Technol. 189 426
|
[35] |
Acharya A, Mishra R and Roy G S 2010 Lat. Am. J. Phys. Educ. 4 603
|
[36] |
Zandi S, Kameli P, Salamati H, Ahmadvand H and Hakimi M 2011 Physica B 406 3215
|
[37] |
Rawal S K, Chawla A K, Jayaganthan R and Chandra R 2014 Mater. Sci. Eng. B 181 16
|
[38] |
Dimova-Malinovska D, Nichev H and Angelov O 2008 Phys. Stat. Sol. (c) 5 3353
|
[39] |
Astinchapa B and Laelabadic K G 2019 J. Phys. Chem. Solids 129 217
|
[40] |
Beena D, Lethy K, Vinodkumar R, Pillai V M, Ganesan V, Phase D and Sudheer S 2009 Appl. Surf. Sci. 255 8334
|
[41] |
Goswami S and Sharma A K 2019 Appl. Surf. Sci. 495 143609
|
[42] |
Feneberg M, Nixdorf J, Lidig C, Goldhahn R, Galazka Z, Bierwagen O and Speck J S 2016 Phys. Rev. B 93 45203
|
[43] |
Ayyub P, Vasa P, Taneja P, Banerjee R and Singh B P 2005 J. Appl. Phys. 97 104310
|
[44] |
Vanalakar S A, Mali S S, Suryawanshi M P, et al. 2014 Opt. Mater. 37 766
|
[45] |
Wemple S H and DiDomenico M 1971 Phys. Rev. B 3 1338
|
[46] |
Wemple S H 1973 Phys. Rev. B 7 3767
|
[47] |
Palik D E 1985 Handbook of Optical Constants of Solids (Academic Press) p. 265
|
[48] |
Miller R C 1964 Appl. Phys. Lett. 5 17
|
[49] |
Wang C C 1970 Phys. Rev. B 2 2045
|
[50] |
Tichý L, Tichá H, Nagels P, Callaerts R, Mertens R and Vlček M 1999 Mater. Lett. 39 122
|
[51] |
del Coso R and Solis J 2004 J. Opt. Soc. Am. B 21 640
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|