INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Prev
|
|
|
Highly efficient bifacial semitransparent perovskite solar cells based on molecular doping of CuSCN hole transport layer |
Shixin Hou(侯世欣)1,2,3,4,5, Biao Shi(石标)1,2,3,4,5, Pengyang Wang(王鹏阳)1,2,3,4,5, Yucheng Li(李玉成)1,2,3,4,5, Jie Zhang(张杰)1,2,3,4,5, Peirun Chen(陈沛润)1,2,3,4,5, Bingbing Chen(陈兵兵)1,2,3,4,5, Fuhua Hou(侯福华)1,2,3,4,5, Qian Huang(黄茜)1,2,3,4,5, Yi Ding(丁毅)1,2,3,4,5, Yuelong Li(李跃龙)1,2,3,4,5, Dekun Zhang(张德坤)1,2,3,4,5, Shengzhi Xu(许盛之)1,2,3,4,5, Ying Zhao(赵颖)1,2,3,4,5, Xiaodan Zhang(张晓丹)1,2,3,4,5 |
1 Institute of Photoelectronic Thin Film Devices and Technology of Nankai University, Tianjin 300350, China; 2 Key Laboratory of Photoelectronic Thin Film Devices and Technology of Tianjin, Tianjin 300350, China; 3 Collaborative Innovation Center of Chemical Science and Engineering(Tianjin), Tianjin 300072, China; 4 Renewable Energy Conversion and Storage Center of Nankai University, Tianjin 300072, China; 5 Engineering Research Center of Thin Film Photoelectronic Technology, Ministry of Education, Tianjin 300350, China |
|
|
Abstract Coper thiocyanate (CuSCN) is generally considered as a very hopeful inorganic hole transport material (HTM) in semitransparent perovskite solar cells (ST-PSCs) because of its low parasitic absorption, high inherent stability, and low cost. However, the poor electrical conductivity and low work function of CuSCN lead to the insufficient hole extraction and large open-circuit voltage loss. Here, 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane (F4TCNQ) is employed to improve conductivity of CuSCN and band alignment at the CuSCN/perovskite (PVK) interface. As a result, the average power conversion efficiency (PCE) of PSCs is boosted by ≈ 11%. In addition, benefiting from the superior transparency of p-type CuSCN HTMs, the prepared bifacial semitransparent n-i-p planar PSCs demonstrate a maximum efficiency of 14.8% and 12.5% by the illumination from the front side and back side, respectively. We believe that this developed CuSCN-based ST-PSCs will promote practical applications in building integrated photovoltaics and tandem solar cells.
|
Received: 05 February 2020
Revised: 19 May 2020
Accepted manuscript online:
|
PACS:
|
88.40.H-
|
(Solar cells (photovoltaics))
|
|
88.40.hj
|
(Efficiency and performance of solar cells)
|
|
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2018YFB1500103), the National Natural Science Foundation of China (Grant No. 61674084), the Overseas Expertise Introduction Project for Discipline Innovation of Higher Education of China (Grant No. B16027), and the Science and Technology Project of Tianjin, China (Grant No. 18ZXJMTG00220). |
Corresponding Authors:
Pengyang Wang, Xiaodan Zhang
E-mail: pywang@nankai.edu.cn;xdzhang@nankai.edu.cn
|
Cite this article:
Shixin Hou(侯世欣), Biao Shi(石标), Pengyang Wang(王鹏阳), Yucheng Li(李玉成), Jie Zhang(张杰), Peirun Chen(陈沛润), Bingbing Chen(陈兵兵), Fuhua Hou(侯福华), Qian Huang(黄茜), Yi Ding(丁毅), Yuelong Li(李跃龙), Dekun Zhang(张德坤), Shengzhi Xu(许盛之), Ying Zhao(赵颖), Xiaodan Zhang(张晓丹) Highly efficient bifacial semitransparent perovskite solar cells based on molecular doping of CuSCN hole transport layer 2020 Chin. Phys. B 29 078801
|
[1] |
Cannavale A, Hörantner M, Eperon G E, Snaith H J, Fiorito F, Ayr U and Martellotta F 2017 Appl. Energy 194 94
|
[2] |
Kim B J, Kim D H, Lee Y Y, Shin H W, Han G S, Hong J S, Mahmood K, Ahn T K, Joo Y C and Hong K S 2015 Energy Environ. Sci. 8 916
|
[3] |
Singh P and Gupta S J J 2019 Int. J. Sci. Tech. Advancements 5 33
|
[4] |
Köhnen E, Jošt M, Morales-Vilches A B, Tockhorn P, Al-Ashouri A, Macco B, Kegelmann L, Korte L, Rech B and Schlatmann R 2019 Sustainable Energy Fuels 3 1995
|
[5] |
Hanmandlu C, Chen C Y, Boopathi K M, Lin H W, Lai C S and Chu C W 2017 ACS. Appl. Mater. Interfaces 9 32635
|
[6] |
https://www.nrel.gov/
|
[7] |
Wang P Y, Li R J, Chen B B, Hou F H, Zhang J, Zhao Y and Zhang X D 2020 Adv. Mater. 32 1905766
|
[8] |
Wang P Y, Jiang Q, Zhao Y, Chen Y, Chu Z, Zhang X W, Zhou Y Q and You J B 2018 Sci. Bull. 63 726
|
[9] |
Li, R J, Wang P Y, Chen B B, Cui, X H, Ding Y, Li Y L, Zhang D K, Zhao Y and Zhang X D 2019 ACS Energy Lett. 5 79
|
[10] |
Shi B, Duan L, Zhao Y, Luo J and Zhang X 2019 Adv. Mater. 32 1806474
|
[11] |
Jeon N J, Lee H G, Kim Y C, Seo J, Noh J H, Lee J and Seok S 2014 J. Am. Chem. Soc. 136 7837
|
[12] |
Luo D, Yang W, Wang Z, Sadhanala A, Hu Q, Su R, Shivanna R, Trindade G F, Watts J F and Xu Z 2018 Science 360 1442
|
[13] |
Kung P K, Li M H, Lin P Y, Chiang Y H, Chan C R, Guo T F and Chen P 2018 Adv. Mater. Interfaces 5 1800882
|
[14] |
Pattanasattayavong P, Yaacobi-Gross N, Zhao K, Ndjawa G O N, Li J, Yan F, O'Regan B C, Amassian A and Anthopoulos T D 2013 Adv. Mater. 25 1504
|
[15] |
Arora N, Dar M I, Hinderhofer A, Pellet N, Schreiber F, Zakeeruddin S M and Grätzel M 2017 Science 358 768
|
[16] |
Jung J W, Chueh C C and Jen A K Y 2015 Adv. Energy Mater. 5 1500486
|
[17] |
Fan L, Li Y, Yao X, Ding Y, Zhao S, Shi B, Wei C, Zhang D, Li B and Wang G 2018 ACS Appl. Energy Mater. 1 1575
|
[18] |
Wang H, Dewi H A, Koh T M, Bruno A, Mhaisalkar S G and Mathews N 2020 ACS Appl. Mater. Interfaces 12 484
|
[19] |
Jin I S, Lee J H, Noh Y W, Park S H and Jung J W 2019 Inorg. Chem. Front. 6 2158
|
[20] |
Wang S, Huang Z, Wang X F, Li Y M, Gunther M, Valenzuela S, Parikh P, Cabreros A, Xiong W and Meng Y S 2018 J. Am. Chem. Soc. 140 16720
|
[21] |
Pellaroque A, Noel N K, Habisreutinger S N, Zhang Y D, Barlow S, Marder S and Snaith H J 2017 ACS Energy Lett. 2 2044
|
[22] |
Wang Q, Bi C and Huang J 2015 Nano Energy 15 275
|
[23] |
Chen W, Wu Y H, Fan J, Djurisic A B, Liu F Z, Tam H W, Ng A, Surya C, Chan W K, Wang D and He Z B 2018 Adv. Energy Mater. 8 1703519
|
[24] |
Li M, Wang Z K, Yang Y G, Hu Y, Feng S L, Wang J M, Gao X Y and Liao L S 2016 Adv. Energy Mater. 6 1601156
|
[25] |
Zhang Y, Elawad M, Yu Z, Jiang X, Lai J and Sun L 2016 RSC Adv. 6 108888
|
[26] |
Senthilkumar N, Park S, Kang H S, Park D W and Choe Y 2011 J. Ind. Eng. Chem. 17 799
|
[27] |
Zhu L, Kim E G, Yi Y and Bredas J L 2011 Chem. Mater. 23 5149
|
[28] |
Su P Y, Huang L B, Liu J M, Chen Y F, Xiao L M, Kuang D B, Mayor M and Su C Y 2017 J. Mater. Chem. A 5 1913
|
[29] |
Wu W Q, Wang Q, Fang Y, Shao Y, Tang S, Deng Y, Lu H, Liu Y, Li T and Yang Z 2018 Nat. Commun. 9 1625
|
[30] |
Chen W, Zhou Y, Wang L, Wu Y, Tu B, Yu B, Liu F, Tam H W, Wang G and Djurišić A B 2018 Adv. Mater. 30 1800515
|
[31] |
Gelmetti I, Montcada N F, Pérez-Rodríguez A, Barrena E, Ocal C, García-Benito I, Molina-Ontoria A, Martín N, Vidal-Ferran A and Palomares E 2019 Energy Environ. Sci. 12 1309
|
[32] |
Fan L, Ding Y, Luo J, Shi B, Yao X, Wei C, Zhang D, Wang G, Sheng Y and Chen Y 2017 J. Mater. Chem. A 5 7423
|
[33] |
Chen P, Bai Y, Wang S, Lyu M, Yun J H and Wang L 2018 Adv. Funct. Mater. 28 1706923
|
[34] |
Muthu C, Agarwal S, Vijayan A, Hazra P, Jinesh K B and Nair V C 2016 Adv. Mater. Interfaces 3 1600092
|
[35] |
Du Y, Xin C, Huang W, Shi B, Ding Y, Wei C, Zhao Y, Li Y and Zhang X 2018 ACS Sustainable Chem. Eng. 6 16806
|
[36] |
Tang Z G, Bessho T, Awai F, Kinoshita T, Maitani M M, Jono R, Murakami T N, Wang H, Kubo T, Uchida Satoshi and Segawa H 2017 Sci. Rep. 7 12183
|
[37] |
Li Z, Tinkham J, Schulz P, Yang M, Kim D H, Berry J, Sellinger A and Zhu K 2017 Adv. Energy Mater. 7 1601451
|
[38] |
Liu P, Wang W, Liu S M, Yang H G and Shao Z P 2019 Adv. Energy Mater. 9 1803017
|
[39] |
Li W, Dong H, Guo X, Li N, Li J, Niu G and Wang L 2014 J. Mater. Chem. A 2 20105
|
[40] |
Chen W, Liu F Z, Feng X Y, Djurišić A B, Chan W K and He Z B 2017 Adv. Energy Mater. 7 1700722
|
[41] |
Zhu S, Yao X, Ren Q, Zheng C, Li S, Tong Y, Shi B, Guo S, Fan L and Ren H 2018 Nano Energy 45 280
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|