INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Prev
Next
|
|
|
SiO2 nanoparticle-regulated crystallization of lead halide perovskite and improved efficiency of carbon-electrode-based low-temperature planar perovskite solar cells |
Zerong Liang(梁泽荣)1, Bingchu Yang(杨兵初)1, Anyi Mei(梅安意)2, Siyuan Lin(林思远)1, Hongwei Han(韩宏伟)2, Yongbo Yuan(袁永波)1, Haipeng Xie(谢海鹏)1, Yongli Gao(高永立)1,3, Conghua Zhou(周聪华)1 |
1 Hunan Key Laboratory of Super-microstructure and Ultrafast Process, School of Physics and Electronics, Central South University, Changsha 410083, China; 2 Michael Gr & #228;tzel Center for Mesoscopic Solar Cells, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China; 3 Department of Physics and Astronomy, University of Rochester, Rochester, NY 14627, USA |
|
|
Abstract SiO2 nanoparticles were used to regulate the crystallizing process of lead halide perovskite films prepared by the sequential deposition method, which was used in the low-temperature-processed, carbon-electrode-basing, hole-conductor-free planar perovskite solar cells. It was observed that, after adding small amount of SiO2 precursor (1 vol%) into the lead iodide solution, performance parameters of open-circuit voltage, short-circuit current and fill factor were all upgraded, which helped to increase the power conversion efficiency (reverse scan) from 11.44(±1.83)% (optimized at 12.42%) to 14.01(±2.14)% (optimized at 15.28%, AM 1.5G, 100 mW/cm2). Transient photocurrent decay curve measurements showed that, after the incorporation of SiO2 nanoparticles, charge extraction was accelerated, while transient photovoltage decay and dark current curve tests both showed that recombination was retarded. The improvement is due to the improved crystallinity of the perovskite film. X-ray diffraction and scanning electron microscopy studies observed that, with incorporation of amorphous SiO2 nanoparticles, smaller crystallites were obtained in lead iodide films, while larger crystallites were achieved in the final perovskite film. This study implies that amorphous SiO2 nanoparticles could regulate the coarsening process of the perovskite film, which provides an effective method in obtaining high quality perovskite film.
|
Received: 05 March 2020
Revised: 20 April 2020
Accepted manuscript online:
|
PACS:
|
84.60.Jt
|
(Photoelectric conversion)
|
|
88.40.H-
|
(Solar cells (photovoltaics))
|
|
88.40.hj
|
(Efficiency and performance of solar cells)
|
|
81.10.-h
|
(Methods of crystal growth; physics and chemistry of crystal growth, crystal morphology, and orientation)
|
|
Fund: Project supported by the Fundamental Research Funds for the Central South University, China (Grant No. 2019zzts426), the National Natural Science Foundation of China (Grant Nos. 61172047, 61774170, and 51673218), the Scientific and Technological Project of Hunan Provincial Development and Reform Commission, China, the National Science Foundation, USA (Grant Nos. CBET-1437656 and DMR-1903962), and the Innovation-Driven Project of Central South University (Grant No. 2020CX006). |
Corresponding Authors:
Bingchu Yang, Conghua Zhou
E-mail: bingchuyang@csu.edu.cn;chzhou@csu.edu.cn
|
Cite this article:
Zerong Liang(梁泽荣), Bingchu Yang(杨兵初), Anyi Mei(梅安意), Siyuan Lin(林思远), Hongwei Han(韩宏伟), Yongbo Yuan(袁永波), Haipeng Xie(谢海鹏), Yongli Gao(高永立), Conghua Zhou(周聪华) SiO2 nanoparticle-regulated crystallization of lead halide perovskite and improved efficiency of carbon-electrode-based low-temperature planar perovskite solar cells 2020 Chin. Phys. B 29 078401
|
[1] |
Kojima A, Teshima K, Shirai Y and Miyasaka T 2009 J. Am. Chem. Soc. 131 6050
|
[2] |
National Renewable Energy Laboratory, https://www.nrel.gov/pv/assets/pdfs/pv-efficiency-chart.20200311.pdf
|
[3] |
Ryu S, Noh J H, Jeon N J, Kim Y C, Yang W S, Seo J and Seok S I 2014 Energy Environ. Sci. 7 2614
|
[4] |
Zhao J J, Zheng X, Deng Y H, Li T, Shao Y C, Gruverman A, Shield J and Huang J S 2016 Energy Environ. Sci. 9 3650
|
[5] |
Wu W Q, Wang Q, Fang Y J, Shao Y C, Tang S, Deng Y H, Lu H D, Liu Y, Li T, Yang Z B, Gruverman A and Huang J S 2018 Nat. Commun. 9 1625
|
[6] |
Liu G, Zhou C H, Wan F, Li K M, Yuan Y B, Gao Y L, Lu Y, Yang B C 2018 Appl. Phys. Lett. 113 113501
|
[7] |
Xu M, Rong Y G, Ku Z L, Mei A Y, Liu T F, Zhang L J, Li X and Han H W 2014 J. Mater. Chem. A 2 8607
|
[8] |
Mei A Y, Li X, Liu L F, Ku Z L, Liu T F, Rong Y G, Xu M, Hu M, Chen J Z, Yang Y, Grätzel M and Han H W 2014 Science 345 295
|
[9] |
Wei Z, Yan K Y, Chen H N, Yi Y, Zhang T, Long X, Li J K, Zhang L X, Wang J N and Yang S H 2014 Energy Environ. Sci. 7 3326
|
[10] |
Yang Y L, Liu Z H, Ng W K, Zhang L H, Zhang H, Meng X Y, Bai Y, Xiao S, Zhang T, Hu C, Wong K S and Yang S H 2019 Adv. Funct. Mater. 29 1806506
|
[11] |
Meng X Y, Zhou J S, Hou J, Tao X, Cheung S H, So S K and Yang S H 2018 Adv. Mater. 30 1706975
|
[12] |
Wei H Y, Xiao J Y, Yang Y Y, Lv S T, Shi J J, Xu X, Dong J, Luo Y H, Li D M and Meng Q B 2015 Carbon 93 861
|
[13] |
Yan J Q, Lin S Y, Qiu X C, Chen H, Li K M, Yuan Y B, Long M Q, Yang B C, Gao Y L and Zhou C H 2019 Appl. Phys. Lett. 114 103503
|
[14] |
Zhou C H and Lin S Y 2019 Solar RRL 4 1900190
|
[15] |
Liu T F, Liu L F, Hu M, Yang Y, Zhang L J, Mei A Y and Han H W 2015 J. Power Sources 293 533
|
[16] |
Xu W K, Chen F X, Cao G H, Wang J Q and Wang L S 2018 Chin. Phys. B 27 038402
|
[17] |
Xiao Z G, Dong Q F, Bi C, Shao Y C, Yuan Y B and Huang J S 2014 Adv. Mater 26 6503
|
[18] |
You J B, Yang Y, Hong Z R, Song T B, Meng L, Liu Y S, Jiang C Y, Zhou H P, Chang W H and Li G 2014 Appl. Phys. Lett. 105 183902
|
[19] |
Saliba M, Matsui T, Seo J Y, Domanski K, Correa-Baena J P, Nazeeruddin M K, Zakeeruddin S M, Tress W, Abate A, Hagfeldt A and Grätzel M 2016 Energy Environ. Sci. 9 1989
|
[20] |
Bu T L, Liu X P, Zhou Y, Yi J P, Huang X, Luo L, Xiao J Y, Ku Z L, Peng Y, Huang F Z, Cheng Y B and Zhong J 2017 Energy Environ. Sci. 10 2509
|
[21] |
Bu T L, Li J, Zheng F, Chen W J, Wen X M, Ku Z L, Peng Y, Zhong J, Cheng Y B and Huang F Z 2018 Nat. Commun. 9 4609
|
[22] |
Stone K H, Gold-Parker A, Pool V L, Unger E L, Bowring A R, McGehee M D, Toney M F and Tassone C J 2018 Nat. Commun. 9 3458
|
[23] |
Kim M J, Kim G H, Lee T K, Choi I W, Choi H W, Jo Y, Yoon Y J, Kim J W, Lee J, Huh D, Lee H, Kwak S K, Kim J Y and Kim D S 2019 Joule 3 2179
|
[24] |
Wu Y Z, Islam A, Yang X D, Qin C J, Liu J, Zhang K, Peng W Q and Han L Y 2014 Energy Environ. Sci. 7 2934
|
[25] |
Wei D, Wang T Y, Ji J, Li M C, Cui P, Li Y Y, Li G Y, Mbengue J M and Song D D 2016 J. Mater. Chem. A 4 1991
|
[26] |
Hu Y, Si S, Mei A Y, Rong Y G, Liu H W, Li X and Han H W 2017 Sol. RRL 1 1600019
|
[27] |
Zhou Y Y, Yang M J, Kwun J, Game O S, Zhao Y X, Pang S P, Padture N P and Zhu K 2016 Nanoscale 8 6265
|
[28] |
Yi C Y, Li X, Luo J S, Zakeeruddin S M and Grätzel M 2016 Adv. Mater 28 2964
|
[29] |
Wang Y F, Li S B, Zhang P, Liu D T, Gu X L, Sarvari H, Ye Z B, Wu J, Wang Z M and Chen Z D 2016 Nanoscale 8 19654
|
[30] |
Bi D Q, Yi C Y, Luo J S, Décoppet J D, Zhang F, Zakeeruddin S M, Li X, Hagfeldt A and Grätzel M 2016 Nat. Energy 1 16142
|
[31] |
Li F C, Yuan J Y, Ling X F, Zhang Y N, Yang Y G, Cheung S H, Ho C H Y, Gao X Y and Ma W L 2018 Adv. Funct. Mater 28 1706377
|
[32] |
Liu C, Tu J, Hu X T, Huang Z Q, Meng X C, Yang J, Duan X P, Tan L C, Li Z and Chen Y W 2019 Adv. Funct. Mater 29 1808059
|
[33] |
Bai Y, Lin Y, Ren L, Shi X L, Strounina E, Deng Y H, Wang Q, Fang Y J, Zheng X P, Lin Y Z, Chen Z G, Du Y, L, Wang L Z and Huang J S 2019 ACS Energy. Lett. 4 1231
|
[34] |
Wang D, Zhang L, Deng K M, Zhang W N, Song J, Wu J H and Lan Z 2018 Energy Technol. 6 2380
|
[35] |
Zhang X Z, Zhang W N, Wu T Y, Wu J H and Lan Z 2019 Sol. Energy 181 293
|
[36] |
Yu Z H, Chen B L, Liu P, Wang C H, Bu C H, Cheng N, Bai S H, Yan Y F and Zhao X Z 2016 Adv. Funct. Mater 26 4866
|
[37] |
Chen H, Li K M, Liu H, Gao Y L, Yuan Y B, Yang B C and Zhou C H 2018 Org Electron. 61 119
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|