Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(7): 078401    DOI: 10.1088/1674-1056/ab8da5
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

SiO2 nanoparticle-regulated crystallization of lead halide perovskite and improved efficiency of carbon-electrode-based low-temperature planar perovskite solar cells

Zerong Liang(梁泽荣)1, Bingchu Yang(杨兵初)1, Anyi Mei(梅安意)2, Siyuan Lin(林思远)1, Hongwei Han(韩宏伟)2, Yongbo Yuan(袁永波)1, Haipeng Xie(谢海鹏)1, Yongli Gao(高永立)1,3, Conghua Zhou(周聪华)1
1 Hunan Key Laboratory of Super-microstructure and Ultrafast Process, School of Physics and Electronics, Central South University, Changsha 410083, China;
2 Michael Gr & #228;tzel Center for Mesoscopic Solar Cells, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China;
3 Department of Physics and Astronomy, University of Rochester, Rochester, NY 14627, USA
Abstract  SiO2 nanoparticles were used to regulate the crystallizing process of lead halide perovskite films prepared by the sequential deposition method, which was used in the low-temperature-processed, carbon-electrode-basing, hole-conductor-free planar perovskite solar cells. It was observed that, after adding small amount of SiO2 precursor (1 vol%) into the lead iodide solution, performance parameters of open-circuit voltage, short-circuit current and fill factor were all upgraded, which helped to increase the power conversion efficiency (reverse scan) from 11.44(±1.83)% (optimized at 12.42%) to 14.01(±2.14)% (optimized at 15.28%, AM 1.5G, 100 mW/cm2). Transient photocurrent decay curve measurements showed that, after the incorporation of SiO2 nanoparticles, charge extraction was accelerated, while transient photovoltage decay and dark current curve tests both showed that recombination was retarded. The improvement is due to the improved crystallinity of the perovskite film. X-ray diffraction and scanning electron microscopy studies observed that, with incorporation of amorphous SiO2 nanoparticles, smaller crystallites were obtained in lead iodide films, while larger crystallites were achieved in the final perovskite film. This study implies that amorphous SiO2 nanoparticles could regulate the coarsening process of the perovskite film, which provides an effective method in obtaining high quality perovskite film.
Keywords:  perovskite solar cell      carbon-electrode      crystallization      low temperature      SiO2      lead iodide  
Received:  05 March 2020      Revised:  20 April 2020      Accepted manuscript online: 
PACS:  84.60.Jt (Photoelectric conversion)  
  88.40.H- (Solar cells (photovoltaics))  
  88.40.hj (Efficiency and performance of solar cells)  
  81.10.-h (Methods of crystal growth; physics and chemistry of crystal growth, crystal morphology, and orientation)  
Fund: Project supported by the Fundamental Research Funds for the Central South University, China (Grant No. 2019zzts426), the National Natural Science Foundation of China (Grant Nos. 61172047, 61774170, and 51673218), the Scientific and Technological Project of Hunan Provincial Development and Reform Commission, China, the National Science Foundation, USA (Grant Nos. CBET-1437656 and DMR-1903962), and the Innovation-Driven Project of Central South University (Grant No. 2020CX006).
Corresponding Authors:  Bingchu Yang, Conghua Zhou     E-mail:  bingchuyang@csu.edu.cn;chzhou@csu.edu.cn

Cite this article: 

Zerong Liang(梁泽荣), Bingchu Yang(杨兵初), Anyi Mei(梅安意), Siyuan Lin(林思远), Hongwei Han(韩宏伟), Yongbo Yuan(袁永波), Haipeng Xie(谢海鹏), Yongli Gao(高永立), Conghua Zhou(周聪华) SiO2 nanoparticle-regulated crystallization of lead halide perovskite and improved efficiency of carbon-electrode-based low-temperature planar perovskite solar cells 2020 Chin. Phys. B 29 078401

[1] Kojima A, Teshima K, Shirai Y and Miyasaka T 2009 J. Am. Chem. Soc. 131 6050
[2] National Renewable Energy Laboratory, https://www.nrel.gov/pv/assets/pdfs/pv-efficiency-chart.20200311.pdf
[3] Ryu S, Noh J H, Jeon N J, Kim Y C, Yang W S, Seo J and Seok S I 2014 Energy Environ. Sci. 7 2614
[4] Zhao J J, Zheng X, Deng Y H, Li T, Shao Y C, Gruverman A, Shield J and Huang J S 2016 Energy Environ. Sci. 9 3650
[5] Wu W Q, Wang Q, Fang Y J, Shao Y C, Tang S, Deng Y H, Lu H D, Liu Y, Li T, Yang Z B, Gruverman A and Huang J S 2018 Nat. Commun. 9 1625
[6] Liu G, Zhou C H, Wan F, Li K M, Yuan Y B, Gao Y L, Lu Y, Yang B C 2018 Appl. Phys. Lett. 113 113501
[7] Xu M, Rong Y G, Ku Z L, Mei A Y, Liu T F, Zhang L J, Li X and Han H W 2014 J. Mater. Chem. A 2 8607
[8] Mei A Y, Li X, Liu L F, Ku Z L, Liu T F, Rong Y G, Xu M, Hu M, Chen J Z, Yang Y, Grätzel M and Han H W 2014 Science 345 295
[9] Wei Z, Yan K Y, Chen H N, Yi Y, Zhang T, Long X, Li J K, Zhang L X, Wang J N and Yang S H 2014 Energy Environ. Sci. 7 3326
[10] Yang Y L, Liu Z H, Ng W K, Zhang L H, Zhang H, Meng X Y, Bai Y, Xiao S, Zhang T, Hu C, Wong K S and Yang S H 2019 Adv. Funct. Mater. 29 1806506
[11] Meng X Y, Zhou J S, Hou J, Tao X, Cheung S H, So S K and Yang S H 2018 Adv. Mater. 30 1706975
[12] Wei H Y, Xiao J Y, Yang Y Y, Lv S T, Shi J J, Xu X, Dong J, Luo Y H, Li D M and Meng Q B 2015 Carbon 93 861
[13] Yan J Q, Lin S Y, Qiu X C, Chen H, Li K M, Yuan Y B, Long M Q, Yang B C, Gao Y L and Zhou C H 2019 Appl. Phys. Lett. 114 103503
[14] Zhou C H and Lin S Y 2019 Solar RRL 4 1900190
[15] Liu T F, Liu L F, Hu M, Yang Y, Zhang L J, Mei A Y and Han H W 2015 J. Power Sources 293 533
[16] Xu W K, Chen F X, Cao G H, Wang J Q and Wang L S 2018 Chin. Phys. B 27 038402
[17] Xiao Z G, Dong Q F, Bi C, Shao Y C, Yuan Y B and Huang J S 2014 Adv. Mater 26 6503
[18] You J B, Yang Y, Hong Z R, Song T B, Meng L, Liu Y S, Jiang C Y, Zhou H P, Chang W H and Li G 2014 Appl. Phys. Lett. 105 183902
[19] Saliba M, Matsui T, Seo J Y, Domanski K, Correa-Baena J P, Nazeeruddin M K, Zakeeruddin S M, Tress W, Abate A, Hagfeldt A and Grätzel M 2016 Energy Environ. Sci. 9 1989
[20] Bu T L, Liu X P, Zhou Y, Yi J P, Huang X, Luo L, Xiao J Y, Ku Z L, Peng Y, Huang F Z, Cheng Y B and Zhong J 2017 Energy Environ. Sci. 10 2509
[21] Bu T L, Li J, Zheng F, Chen W J, Wen X M, Ku Z L, Peng Y, Zhong J, Cheng Y B and Huang F Z 2018 Nat. Commun. 9 4609
[22] Stone K H, Gold-Parker A, Pool V L, Unger E L, Bowring A R, McGehee M D, Toney M F and Tassone C J 2018 Nat. Commun. 9 3458
[23] Kim M J, Kim G H, Lee T K, Choi I W, Choi H W, Jo Y, Yoon Y J, Kim J W, Lee J, Huh D, Lee H, Kwak S K, Kim J Y and Kim D S 2019 Joule 3 2179
[24] Wu Y Z, Islam A, Yang X D, Qin C J, Liu J, Zhang K, Peng W Q and Han L Y 2014 Energy Environ. Sci. 7 2934
[25] Wei D, Wang T Y, Ji J, Li M C, Cui P, Li Y Y, Li G Y, Mbengue J M and Song D D 2016 J. Mater. Chem. A 4 1991
[26] Hu Y, Si S, Mei A Y, Rong Y G, Liu H W, Li X and Han H W 2017 Sol. RRL 1 1600019
[27] Zhou Y Y, Yang M J, Kwun J, Game O S, Zhao Y X, Pang S P, Padture N P and Zhu K 2016 Nanoscale 8 6265
[28] Yi C Y, Li X, Luo J S, Zakeeruddin S M and Grätzel M 2016 Adv. Mater 28 2964
[29] Wang Y F, Li S B, Zhang P, Liu D T, Gu X L, Sarvari H, Ye Z B, Wu J, Wang Z M and Chen Z D 2016 Nanoscale 8 19654
[30] Bi D Q, Yi C Y, Luo J S, Décoppet J D, Zhang F, Zakeeruddin S M, Li X, Hagfeldt A and Grätzel M 2016 Nat. Energy 1 16142
[31] Li F C, Yuan J Y, Ling X F, Zhang Y N, Yang Y G, Cheung S H, Ho C H Y, Gao X Y and Ma W L 2018 Adv. Funct. Mater 28 1706377
[32] Liu C, Tu J, Hu X T, Huang Z Q, Meng X C, Yang J, Duan X P, Tan L C, Li Z and Chen Y W 2019 Adv. Funct. Mater 29 1808059
[33] Bai Y, Lin Y, Ren L, Shi X L, Strounina E, Deng Y H, Wang Q, Fang Y J, Zheng X P, Lin Y Z, Chen Z G, Du Y, L, Wang L Z and Huang J S 2019 ACS Energy. Lett. 4 1231
[34] Wang D, Zhang L, Deng K M, Zhang W N, Song J, Wu J H and Lan Z 2018 Energy Technol. 6 2380
[35] Zhang X Z, Zhang W N, Wu T Y, Wu J H and Lan Z 2019 Sol. Energy 181 293
[36] Yu Z H, Chen B L, Liu P, Wang C H, Bu C H, Cheng N, Bai S H, Yan Y F and Zhao X Z 2016 Adv. Funct. Mater 26 4866
[37] Chen H, Li K M, Liu H, Gao Y L, Yuan Y B, Yang B C and Zhou C H 2018 Org Electron. 61 119
[1] Giant low-field cryogenic magnetocaloric effect in polycrystalline LiErF4 compound
Zhaojun Mo(莫兆军), Jianjian Gong(巩建建), Huicai Xie(谢慧财), Lei Zhang(张磊), Qi Fu(付琪), Xinqiang Gao(高新强), Zhenxing Li(李振兴), and Jun Shen(沈俊). Chin. Phys. B, 2023, 32(2): 027503.
[2] Finite superconducting square wire-network based on two-dimensional crystalline Mo2C
Zhen Liu(刘震), Zi-Xuan Yang(杨子萱), Chuan Xu(徐川), Jia-Ji Zhao(赵嘉佶), Lu-Junyu Wang(王陆君瑜), Yun-Qi Fu(富云齐), Xue-Lei Liang(梁学磊), Hui-Ming Cheng(成会明), Wen-Cai Ren(任文才), Xiao-Song Wu(吴孝松), and Ning Kang(康宁). Chin. Phys. B, 2022, 31(9): 097404.
[3] Improving efficiency of inverted perovskite solar cells via ethanolamine-doped PEDOT:PSS as hole transport layer
Zi-Jun Wang(王子君), Jia-Wen Li(李嘉文), Da-Yong Zhang(张大勇), Gen-Jie Yang(杨根杰), and Jun-Sheng Yu(于军胜). Chin. Phys. B, 2022, 31(8): 087802.
[4] Ferroelectric Ba0.75Sr0.25TiO3 tunable charge transfer in perovskite devices
Zi-Xuan Chen(陈子轩), Jia-Lin Sun(孙家林), Qiang Zhang(张强), Chong-Xin Qian(钱崇鑫), Ming-Zi Wang(王明梓), and Hong-Jian Feng(冯宏剑). Chin. Phys. B, 2022, 31(5): 057202.
[5] First-principles calculations of the hole-induced depassivation of SiO2/Si interface defects
Zhuo-Cheng Hong(洪卓呈), Pei Yao(姚佩), Yang Liu(刘杨), and Xu Zuo(左旭). Chin. Phys. B, 2022, 31(5): 057101.
[6] Surface modulation of halide perovskite films for efficient and stable solar cells
Qinxuan Dai(戴沁煊), Chao Luo(骆超), Xianjin Wang(王显进), Feng Gao(高峰), Xiaole Jiang(姜晓乐), and Qing Zhao(赵清). Chin. Phys. B, 2022, 31(3): 037303.
[7] Charge transfer modification of inverted planar perovskite solar cells by NiOx/Sr:NiOx bilayer hole transport layer
Qiaopeng Cui(崔翘鹏), Liang Zhao(赵亮), Xuewen Sun(孙学文), Qiannan Yao(姚倩楠), Sheng Huang(黄胜), Lei Zhu(朱磊), Yulong Zhao(赵宇龙), Jian Song(宋健), and Yinghuai Qiang(强颖怀). Chin. Phys. B, 2022, 31(3): 038801.
[8] Nano Ag-enhanced photoelectric conversion efficiency in all-inorganic, hole-transporting-layer-free CsPbIBr2 perovskite solar cells
Youming Huang(黄友铭), Yizhi Wu(吴以治), Xiaoliang Xu(许小亮), Feifei Qin(秦飞飞), Shihan Zhang(张诗涵), Jiakai An(安嘉凯), Huijie Wang(王会杰), and Ling Liu(刘玲). Chin. Phys. B, 2022, 31(12): 128802.
[9] Microwave absorption properties regulation and bandwidth formula of oriented Y2Fe17N3-δ@SiO2/PU composite synthesized by reduction-diffusion method
Hao Wang(王浩), Liang Qiao(乔亮), Zu-Ying Zheng(郑祖应), Hong-Bo Hao(郝宏波), Tao Wang(王涛), Zheng Yang(杨正), and Fa-Shen Li(李发伸). Chin. Phys. B, 2022, 31(11): 114206.
[10] Could two-dimensional perovskites fundamentally solve the instability of perovskite photovoltaics
Luoran Chen(陈烙然), Hu Wang(王虎), and Yuchuan Shao(邵宇川). Chin. Phys. B, 2022, 31(11): 117803.
[11] Sputtered SnO2 as an interlayer for efficient semitransparent perovskite solar cells
Zheng Fang(方正), Liu Yang(杨柳), Yongbin Jin(靳永斌), Kaikai Liu(刘凯凯), Huiping Feng(酆辉平), Bingru Deng(邓冰如), Lingfang Zheng(郑玲芳), Changcai Cui(崔长彩), Chengbo Tian(田成波), Liqiang Xie(谢立强), Xipeng Xu(徐西鹏), and Zhanhua Wei(魏展画). Chin. Phys. B, 2022, 31(11): 118801.
[12] Recent advances of interface engineering in inverted perovskite solar cells
Shiqi Yu(余诗琪), Zhuang Xiong(熊壮), Zhenhan Wang(王振涵), Haitao Zhou(周海涛), Fei Ma(马飞), Zihan Qu(瞿子涵), Yang Zhao(赵洋), Xinbo Chu(楚新波), and Jingbi You(游经碧). Chin. Phys. B, 2022, 31(10): 107307.
[13] High efficiency ETM-free perovskite cell composed of CuSCN and increasing gradient CH3NH3PbI3
Tao Wang(汪涛), Gui-Jiang Xiao(肖贵将), Ren Sun(孙韧), Lin-Bao Luo(罗林保), and Mao-Xiang Yi(易茂祥). Chin. Phys. B, 2022, 31(1): 018801.
[14] Defect calculations with quasiparticle correction: A revisited study of iodine defects in CH3NH3PbI3
Ling Li(李玲) and Wan-Jian Yin(尹万健). Chin. Phys. B, 2022, 31(1): 017103.
[15] Passivation and dissociation of Pb-type defects at a-SiO2/Si interface
Xue-Hua Liu(刘雪华), Wei-Feng Xie(谢伟锋), Yang Liu(刘杨), and Xu Zuo(左旭). Chin. Phys. B, 2021, 30(9): 097101.
No Suggested Reading articles found!