INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Prev
Next
|
|
|
Carbon nanotube-based nanoelectromechanical resonatoras mass biosensor |
Ahmed M. Elseddawy1, Adel H. Phillips2, Ahmed S Bayoumi3 |
1 Faculty of Graduate Studies, University of Windsor, Windsor, Ontario, Canada; 2 Faculty of Engineering, Ain-Shams University, Cairo, Egypt; 3 Faculty of Engineering, Kafr-Elsheikh Unversity, Kafr-Elsheikh, Egypt |
|
|
Abstract The use of single walled carbon nanotube-based nanoelectromechanical system (NEMS) resonator to sense the biomolecules' mass is investigated under the influence of an external ac-field. A single walled carbon nanotube (SWCNT) cantilever has been proposed and studied if the mass is attached at the tip or various intermediate positions. The shift of the resonant frequency and the quality factor have been investigated and show high sensitivity to the attached mass of biomolecule and its position. The proposed SWCNT-based NEMS resonator is a good candidate for sensing and tracing biomolecules' mass as concentration of acetone in human exhale, resulting in a painless, correct, and simple diabetics' diagnosis.
|
Received: 01 February 2020
Revised: 26 March 2020
Accepted manuscript online:
|
PACS:
|
85.30.De
|
(Semiconductor-device characterization, design, and modeling)
|
|
72.80.Vp
|
(Electronic transport in graphene)
|
|
85.40.Qx
|
(Microcircuit quality, noise, performance, and failure analysis)
|
|
Corresponding Authors:
Ahmed M. Elseddawy, Adel H. Phillips, Ahmed S Bayoumi
E-mail: elsedda@uwindsor.ca;adel_phillips@eng.asu.edu.eg;ahmed.bayoumi@eng.kfs.edu.eg
|
Cite this article:
Ahmed M. Elseddawy, Adel H. Phillips, Ahmed S Bayoumi Carbon nanotube-based nanoelectromechanical resonatoras mass biosensor 2020 Chin. Phys. B 29 078501
|
[1] |
Cao Y Q, Huang H L, Sun Z H, Li F Y, Bai H L, Zhang H, Sun N and Yung C 2019 Acta Phys. Sin 68 158502 (in Chinese)
|
[2] |
Ye S J, Li C Z, Zhang J H, Tan J J and Luo Y 2019 Acta Phys. Sin. 68 013101 (in Chinese)
|
[3] |
Xiaolong C, Dong Z, Liang C, Fangfang R, Hong Z, Rong Z, Youdou Z and Hai L 2019 Chin. Phys. B 28 098503
|
[4] |
Fei H, Ruibo C, Feibo D, Jizhi L, Zhiwei L and Juin J L 2019 Chin. Phys. B 28 088501
|
[5] |
Slimane L, Mohamed F and Abderrahmane K 2019 Chin. Phys. B 28 088801
|
[6] |
Shu X S, Ming M C, Meng K L, Liu H M, Ying H Z, Yu X L, Peng D, Zhi J and Zhi C W 2019 Chin. Phys. B 28 078501
|
[7] |
Zheng X W, Feng Z, Zhan W S, Jun C, Ya W H, Guo G Y, Xing F L, Wan S Z, Lei W, Guo S S, Yi P Z 2019 Chin. Phys. B 28 068504
|
[8] |
Iijima S 1991 Nature 354 56
|
[9] |
Iijima S and Ichihashi T 1993 Nature 363 603
|
[10] |
Treacy M M J, Ebbesen T W, and Gibson J M 1996 Nature 381 678
|
[11] |
Tans S J, Vershueren A R M and Dekker C 1998 Nature 393 49
|
[12] |
De-Heer W A, Chatelain A and Ugarte D 1995 Science 270 1179
|
[13] |
Kong J, Franklin N R, Zhan C W, Chapline M G, Peng S, Cho K J and Dai H J 2000 Science 287 622
|
[14] |
Lu J P 1997 Phys. Rev. Lett. 79 1297
|
[15] |
Yu M F, Files B S, Repalli S A and Ruoff R S 2000 Phys. Rev. Lett. 84 5552
|
[16] |
Sazonova V, Yaish Y, Ustunel H, Roundy D, Arias T A and McEuen P L 2004 Nature 431 284
|
[17] |
Witkamp B, Poot M and Zant H V 2006 Nano Lett. 6 2904
|
[18] |
Reulet B, Kasumov V Y, Kociak M, Deblock R, Khodos I I, Gorbatov Y B Volkov V T, Journet C and Bouchiat H 2000 Phys. Rev. Lett. 85 2829
|
[19] |
Wang K and Wang B 2016 J. Vib. Control 22 1405
|
[20] |
Natsuki T 2017 Electronics 6 56
|
[21] |
Schmid S, Villanueva L G and Roukes M L 2016 Fundamentals of Nanomechanical Resonators (Berlin: Springer International Publishing)
|
[22] |
Sinha N, Ma J and Yeow J T W 2006 J. Nanosci. Nanotechno. 6 573
|
[23] |
Huttel A K, Meerwaldt H B, Steele G A, Poot M, Witkamp B, Kouwenhoven L P and van der Zant H S J 2010 Phys. Status Solidi B 247 2974
|
[24] |
Schmid D R, Stiller P L, Strunk Ch and Huttel A K 2012 New J. Phys. 14 083024
|
[25] |
Soltani P, Pashaei O, Taherian M M and Farshidianfar A 2012 Adv. Mater. Res. 403-408 1163
|
[26] |
Rugar D, Budakian R, Mamin H J and Chui B W 2004 Nature 430 329
|
[27] |
Budakian R, Mamin H J and Rugar D 2006 App. Phys. Lett. 89 113113
|
[28] |
Yang Y T, Callergari C, Feng X L, Ekinci K L and Roukes M L 2006 Nano Lett. 6 583
|
[29] |
Li M, Tang H X and Roukes M L 2007 Nat. Nanotechnol. 2 114
|
[30] |
Jensen K, Kin K and Zettl A 2008 Nat. Nanotechnol. 3 533
|
[31] |
Naik A K, Hanay M S, Hiebert W K, Feng X L and Roukes M L 2009 Nat. Nanotechnol. 4 445
|
[32] |
Joshi A Y, Harsha S P and Sharma S C 2010 Physica E 42 2115
|
[33] |
Chaste J, Eichler A, Moser J, Ceballos G, Rurali R and Bachtold A 2012 Nat. Nanotechnol. 7 301
|
[34] |
Arash B and Wang Q 2013 Sci. Rep. 3 1
|
[35] |
Sireesha M, Babu V J, Kiran A S K and Ramakrishna S 2018 Nanocomposites 4 36
|
[36] |
Cheland A N and Geller M R 2004 Phys. Rev. Lett. 93 070501
|
[37] |
Tamayo J, Calleja M, Ramos D and Mertens J 2007 Phys. Rev. B 76 180201
|
[38] |
Spletzer M, Raman A, Wu A Q, Xu X F and Reifenberger R 2006 Appl. Phys. Lett. 88 254102
|
[39] |
Shim S B, Imboden M and Mohanty P 2007 Science 316 95
|
[40] |
Kwon T, Eom K, Park J, Yoon D S, Lee H L and Kim T S 2008 Appl. Phys. Lett. 93 173901
|
[41] |
Eoma K, Park H S, Yoonc D S and Kwonc T 2011 Phys. Rep. 503 115
|
[42] |
Zhou Y, Fang Y and Ramasamy R P 2019 Sensors 19 392
|
[43] |
Goeders K M, Colton J S and Bottomley L A Chem. Rev. 108 522
|
[44] |
Natsuki T 2017 Electronics 6 56
|
[45] |
Choi H K, Lee J, Park Mi K and Oh J H 2017 J. Food Qual. 5239487
|
[46] |
Same S and Samee G 2018 CJMB Sciences 5 1
|
[47] |
Elseddawy A M, Zain W A and Phillips A H 2012 J. Am. Sci. 8 566
|
[48] |
Platero G and Aguado R 2004 Phys. Rep. 395 1
|
[49] |
Lassagne B, Tarakanov Y, Kinaret J, Garcia-Sanchez D and Bachtold A 2009 Science 325 1107
|
[50] |
Wu D H, Chien W T, Chen C S and Chen H H 2006 Sensor Actuat A Phys. 126 117
|
[51] |
Chowdhurg R, Adhikari S, and Mitchell J 2009 Physica E 42 104
|
[52] |
Joshi A Y, Sharma S C and Harsha S P 2008 Int. J. Electrospun Nanofibers Applications 2 161
|
[53] |
Ferry D K and Goodnik S M 1997 Transport in Nanostructures (New York: Cambridge University Press)
|
[54] |
Bosnick K, Gabor N and Paul M 2006 App. Phys. Lett. 89 163121
|
[55] |
Mina A N, Awadallah A A, Phillips A H and Ahmed R R 2010 Prog. Phys. 4 61
|
[56] |
Awadallah A A, Phillips A H, Mina A N and Ahmed R R 2011 Int. J. Nanosci. 10 419
|
[57] |
Deng C, Zhang J, Yu X, Zhang W and Zhang X 2004 J Chromatogr B Analyt Technol Biomed Life Sci. 810 269
|
[58] |
Meyer C, Elzerman J M and Kouwenhoven L P 2007 Nano Lett. 7 295
|
[59] |
Stampler C, Jungen A, Linderman R, Obergfell D, Roth S and Hierold C 2006 Nano Lett. 6 1449
|
[60] |
Singh G, Rice P and Mahajan R L 2007 Nanotechnol. 18 475501
|
[61] |
Li C and Chou T W 2003 Phys. Rev. B. 68 073405
|
[62] |
Scarpa F and Adhikari S 2008 J. Non-Cryst Solids 354 4151
|
[63] |
Ekinci K and Roukes M 2005 Rev. Sci. Instrum. 76 061101
|
[64] |
Aydogdu M and Filiz S 2011 Physica E 43 1229
|
[65] |
Li J J and Zhu K D 2013 Phys. Rep. 525 223
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|