Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(6): 064211    DOI: 10.1088/1674-1056/ab84ce
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Four-soliton solution and soliton interactions of the generalized coupled nonlinear Schrödinger equation

Li-Jun Song(宋丽军), Xiao-Ya Xu(徐晓雅), Yan Wang(王艳)
Department of Physics and Electronic Engineering, Shanxi University, Taiyuan 030006, China
Abstract  Based on the generalized coupled nonlinear Schrödinger equation, we obtain the analytic four-bright-bright soliton solution by using the Hirota bilinear method. The interactions among four solitons are also studied in detail. The results show that the interaction among four solitons mainly depends on the values of solution parameters; k1 and k2 mainly affect the two inboard solitons while k3 and k4 mainly affect the two outboard solitons; the pulse velocity and width mainly depend on the imaginary part of ki (i=1, 2, 3, 4), while the pulse amplitude mainly depends on the real part of ki (i=1, 2, 3, 4).
Received:  30 December 2019      Revised:  25 February 2020      Accepted manuscript online: 
PACS:  42.65.-k (Nonlinear optics)  
  11.10.Lm (Nonlinear or nonlocal theories and models)  
  42.65.Tg (Optical solitons; nonlinear guided waves)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11705108).
Corresponding Authors:  Li-Jun Song     E-mail:  songlij@sxu.edu.cn

Cite this article: 

Li-Jun Song(宋丽军), Xiao-Ya Xu(徐晓雅), Yan Wang(王艳) Four-soliton solution and soliton interactions of the generalized coupled nonlinear Schrödinger equation 2020 Chin. Phys. B 29 064211

[1] Wright O C, Gregory F M and Mclaughlin K T R 1999 Phys. Lett. A 257 170
[2] Sun J J and Ma S W 2015 J. Math. Phys. 56 022110
[3] Belanger N and Belanger P A 1996 Opt. Commun. 124 301
[4] Mofiz U A 2007 Phys. Plasmas. 14 112906
[5] Chen Y J 1989 J. Appl. Phys. 66 43
[6] Sun W R, Liu D Y and Xie X Y 2017 Chaos 27 043114
[7] Tang X Y, Guo Y and Shukla P K 2011 Eur. Phys. J. D 61 677
[8] Wang Z and Cui S B 2015 J. Math. Phys. 56 021503
[9] Qi F H, Ju H M and Meng X H 2014 Nonlinear Dyn. 77 1331
[10] Zhong X Q, Tang T T, Xiang A P and Cheng K 2011 Opt. Commun. 284 4727
[11] Calegar F, Vozzi C and Gasilov S 2008 Phys. Rev. Lett. 100 123006
[12] Chen D, Sun B and Wei Y 2010 Laser Phys. 20 1733
[13] Song S S, Howard S S and Liu Z J 2006 Appl. Phys. Lett. 89 041115
[14] Fischer B, Cronin-Golomb M, White J and Yariv A 1981 Opt. Lett. 6 519
[15] Yajima T and Souma H 1978 Phys. Rev. A 17 309
[16] Wang D S, Zhang D J and Yang J K 2010 J. Math. Phys. 51 023510
[17] Vishnu P N and Senthilvelan M 2016 Commun. Nonlinear Sci. Numer. Simulat. 36 366
[18] Lu X and Peng M S 2013 Nonlinear Dyn. 73 405
[19] Hua S H and Mihalache D 2015 J. Phys. A: Math. Theor. 48 215202
[20] Vijayajayanthi M, Kanna T and Lakshmanan M 2008 Phys. Rev. A 77 013820
[21] Wang Y F, Tian B, Li M, Wang P and Wang M 2014 Commun. Nonlinear Sci. Numer. Simulat. 19 1783
[22] Musammil N M, Porsezian K, Subha P A and Nithyanandan K 2017 Chaos 27 023113
[23] Zhang H Q and Ma W X 2014 Appl. Math. Comput. 230 509
[24] Agalarov A, Zhulego V and Gadzhimuradov T 2015 Phys. Rev. E 91 042909
[25] Vishnu P N, Senthilvelan M and Lakshmanan M 2014 Phys. Rev. E 89 062901
[26] Khare A and Saxena A 2015 J. Math. Phys. 56 032104
[27] Du Z, Tian B, Chai H B, Sun Y and Zhao X H 2018 Chaos 109 90
[28] Esen A, Sulaiman T A, Bulut H and Baskonus H M 2018 Optik 167 150
[29] Song J Y, Hao H Q and Zhang X M 2018 Appl. Math. Lett. 78 126
[30] Wang H and Li B 2011 Chin. Phys. B 20 040203
[31] Zuo J M and Zhang Y M 2011 Chin. Phys. B 20 010205
[32] Li M M, Hu C L, Wu J, Lai X J and Wang Y Y 2019 Chin. Phys. B 28 120502
[1] Giant saturation absorption of tungsten trioxide film prepared based on the seedless layer hydrothermal method
Xiaoguang Ma(马晓光), Fangzhen Hu(胡芳珍), Xi Chen(陈希), Yimeng Wang(王艺盟), Xiaojian Hao(郝晓剑), Min Gu(顾敏), and Qiming Zhang(张启明). Chin. Phys. B, 2023, 32(3): 034212.
[2] Watt-level, green-pumped optical parametric oscillator based on periodically poled potassium titanyl phosphate with high extraction efficiency
Hang-Hang Yu(俞航航), Zhi-Tao Zhang(张志韬), and Hong-Wen Xuan(玄洪文). Chin. Phys. B, 2022, 31(12): 124203.
[3] High-order harmonic generations in tilted Weyl semimetals
Zi-Yuan Li(李子元), Qi Li(李骐), and Zhou Li(李舟). Chin. Phys. B, 2022, 31(12): 124204.
[4] Modulated spatial transmission signals in the photonic bandgap
Wenqi Xu(许文琪), Hui Wang(王慧), Daohong Xie(谢道鸿), Junling Che(车俊岭), and Yanpeng Zhang(张彦鹏). Chin. Phys. B, 2022, 31(12): 124209.
[5] Phase-matched second-harmonic generation in hybrid polymer-LN waveguides
Zijie Wang(王梓杰), Bodong Liu(刘伯东), Chunhua Wang(王春华), and Huakang Yu(虞华康). Chin. Phys. B, 2022, 31(10): 104208.
[6] Up-conversion detection of mid-infrared light carrying orbital angular momentum
Zheng Ge(葛正), Chen Yang(杨琛), Yin-Hai Li(李银海), Yan Li(李岩), Shi-Kai Liu(刘世凯), Su-Jian Niu(牛素俭), Zhi-Yuan Zhou(周志远), and Bao-Sen Shi(史保森). Chin. Phys. B, 2022, 31(10): 104210.
[7] Raman lasing and other nonlinear effects based on ultrahigh-Q CaF2 optical resonator
Tong Xing(邢彤), Enbo Xing(邢恩博), Tao Jia(贾涛), Jianglong Li(李江龙), Jiamin Rong(戎佳敏), Yanru Zhou(周彦汝), Wenyao Liu(刘文耀), Jun Tang(唐军), and Jun Liu(刘俊). Chin. Phys. B, 2022, 31(10): 104204.
[8] Second harmonic generation from precise diamond blade diced ridge waveguides
Hui Xu(徐慧), Ziqi Li(李子琦), Chi Pang(逄驰), Rang Li(李让), Genglin Li(李庚霖), Sh. Akhmadaliev, Shengqiang Zhou(周生强), Qingming Lu(路庆明), Yuechen Jia(贾曰辰), and Feng Chen(陈峰). Chin. Phys. B, 2022, 31(9): 094209.
[9] Temperature and strain sensitivities of surface and hybrid acoustic wave Brillouin scattering in optical microfibers
Yi Liu(刘毅), Yuanqi Gu(顾源琦), Yu Ning(宁钰), Pengfei Chen(陈鹏飞), Yao Yao(姚尧),Yajun You(游亚军), Wenjun He(贺文君), and Xiujian Chou(丑修建). Chin. Phys. B, 2022, 31(9): 094208.
[10] Numerical investigation of the nonlinear spectral broadening aiming at a few-cycle regime for 10 ps level Nd-doped lasers
Xi-Hang Yang(杨西杭), Fen-Xiang Wu(吴分翔), Yi Xu(许毅), Jia-Bing Hu(胡家兵), Pei-Le Bai(白培乐), Hai-Dong Chen(陈海东), Xun Chen(陈洵), and Yu-Xin Leng(冷雨欣). Chin. Phys. B, 2022, 31(9): 094206.
[11] Numerical study of converting beat-note signals of dual-frequency lasers to optical frequency combs by optical injection locking of semiconductor lasers
Chenhao Liu(刘晨浩), Haoshu Jin(靳昊澍), Hui Liu(刘辉), and Jintao Bai(白晋涛). Chin. Phys. B, 2022, 31(8): 084205.
[12] A 45-μJ, 10-kHz, burst-mode picosecond optical parametric oscillator synchronously pumped at a second harmonic cavity
Chao Ma(马超), Ke Liu(刘可), Yong Bo(薄勇), Zhi-Min Wang(王志敏), Da-Fu Cui(崔大复), and Qin-Jun Peng(彭钦军). Chin. Phys. B, 2022, 31(8): 084206.
[13] High power supercontinuum generation by dual-color femtosecond laser pulses in fused silica
Saba Zafar, Dong-Wei Li(李东伟), Acner Camino, Jun-Wei Chang(常峻巍), and Zuo-Qiang Hao(郝作强). Chin. Phys. B, 2022, 31(8): 084209.
[14] Photon-interactions with perovskite oxides
Hongbao Yao(姚洪宝), Er-Jia Guo(郭尔佳), Chen Ge(葛琛), Can Wang(王灿), Guozhen Yang(杨国桢), and Kuijuan Jin(金奎娟). Chin. Phys. B, 2022, 31(8): 088106.
[15] Tunable enhanced spatial shifts of reflective beam on the surface of a twisted bilayer of hBN
Yu-Bo Li(李宇博), Hao-Yuan Song(宋浩元), Yu-Qi Zhang(张玉琦), Xiang-Guang Wang(王相光),Shu-Fang Fu(付淑芳), and Xuan-Zhang Wang(王选章). Chin. Phys. B, 2022, 31(6): 064207.
No Suggested Reading articles found!