ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS |
Prev
Next
|
|
|
Excitation-wavelength-dependent THz wave modulation via external bias electric field |
Shi-Jia Feng(冯世嘉)1, Li-Quan Dong(董立泉)1, Dan-Ni Ma(马丹妮)1, Tong Wu(吴同)1, Yong Tan(谭永)1, Liang-Liang Zhang(张亮亮)2, Cun-Lin Zhang(张存林)2, Yue-Jin Zhao(赵跃进)1 |
1 Beijing Key Laboratory for Precision Optoelectronic Measurement Instrument and Technology, School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China; 2 Key Laboratory of Terahertz Optoelectronics, Ministry of Education, Beijing Key Laboratory for Terahertz Spectroscopy and Imaging, and Beijing Advanced Innovation Center for Imaging Technology, Department of Physics, Capital Normal University, Beijing 100048, China |
|
|
Abstract A theoretical model was proposed to describe the effects of external bias electric field on terahertz (THz) generated in air plasma. The model predicted that for a plasma in a bias electric field, the amplification effect of the THz wave intensity increases with the increase of the excitation laser wavelength. We experimentally observed the relationship between the THz enhancement effect and the electric field strength at different wavelengths. Experimental results showed a good agreement with the model predictions. These results enhance our understanding of the physical mechanism by which femtosecond lasers excite air to generate THz and extend the practical applications of THz generation and modulation.
|
Received: 10 February 2020
Revised: 03 March 2020
Accepted manuscript online:
|
PACS:
|
42.65.-k
|
(Nonlinear optics)
|
|
87.50.U-
|
|
|
Fund: Project supported by the Natural Science Foundation of Beijing, China (Grant No. JQ18015) and the National Natural Science Foundation of China (Grant Nos. 61935001 and 61905271). |
Corresponding Authors:
Liang-Liang Zhang, Yue-Jin Zhao
E-mail: zhlliang@126.com;yjzhao@bit.edu.cn
|
Cite this article:
Shi-Jia Feng(冯世嘉), Li-Quan Dong(董立泉), Dan-Ni Ma(马丹妮), Tong Wu(吴同), Yong Tan(谭永), Liang-Liang Zhang(张亮亮), Cun-Lin Zhang(张存林), Yue-Jin Zhao(赵跃进) Excitation-wavelength-dependent THz wave modulation via external bias electric field 2020 Chin. Phys. B 29 064210
|
[1] |
Auston D H, Cheung K P and Smith P R 1984 Appl. Phys. Lett. 45 284
|
[2] |
Darrow J T, Hu B B, Auston D H and Zhang X C 1990 Opt. Lett. 15 323
|
[3] |
Froberg N M, Hu B B, Zhang X C and Auston D H 1991 Appl. Phys. Lett. 59 3207
|
[4] |
Wang W M, Sheng Z M, Wu H C, Chen M, Li C, Zhang J and Mima K 2008 Opt. Express 16 16999
|
[5] |
Babushkin I, Kuehn W, Koehler C, Skupin S, Berge L, Reimann K, Woerner M, Herrmann J and Elsaesser T 2010 Phys. Rev. Lett. 105 053903
|
[6] |
Clerici M, Peccianti M, Schmidt B E, Caspani L, Shalaby M, Giguére M, Lotti A, Couairon A, Légaré F and Ozaki T 2013 Phys. Rev. Lett. 110 253901
|
[7] |
Andreeva V A, Kosareva O G, Panov N A, Shipilo D E, Solyankin P M, Esaulkov M N, González d A M P, Shkurinov A P, Makarov V A and Bergé L 2016 Phys. Rev. Lett. 116 063902
|
[8] |
Zhang L L, Wang W M, Wu T, Zhang R, Zhang S J, Zhang C L, Zhang Y, Sheng Z M and Zhang X C 2017 Phys. Rev. Lett. 119 235001
|
[9] |
Zhang L L, Wang W M, Wu T, Feng S J, Kang K, Zhang C L, Zhang Y, Li Y T, Sheng Z M and Zhang X C 2019 Phys. Rev. Appl. 12 014005
|
[10] |
Fu Y N, Zhang X Q, Zhao G Z, Li Y H and Yu J Y 2017 Acta Phys. Sin. 66 180701 (in Chinese)
|
[11] |
Li S F, Lu C H, Yang C S, Yu Y Z, Sun Z R and Zhang S A 2017 Chin. Phys. B 26 114206
|
[12] |
Zhou L, Zhao G Z and Li X N 2019 Acta Phys. Sin. 68 108701 (in Chinese)
|
[13] |
Li X N, Zhou L and Zhao G Z 2019 Acta Phys. Sin. 68 238101 (in Chinese)
|
[14] |
Li M, Li A Y, He B Q, Yuan S and Zeng H P 2016 Chin. Phys. B 25 044209
|
[15] |
Pei M J, Lu C H, Wang X W, Sun Z R and Zhang S A 2018 Chin. Phys. B 27 084209
|
[16] |
Li X L, Bai Y and Liu P 2020 Acta Phys. Sin. 69 024205 (in Chinese)
|
[17] |
Hamster H, Sullivan A, Gordon S, White W and Falcone R W 1993 Phys. Rev. Lett. 71 2725
|
[18] |
Hamster H, Sullivan A, Gordon S, White W and Falcone R W 1994 Phys. Rev. E 49 671
|
[19] |
Cook D J and Hochstrasser M 2000 Opt. Lett. 25 1210
|
[20] |
Kress M, Loffer T, Eden S, Thomson M and Roskos H G 2004 Opt. Lett. 29 1120
|
[21] |
Bartel T, Reimann P, Woerner M and Elsaesser T 2005 Opt. Lett. 30 2805
|
[22] |
Xie X, Dai J M and Zhang X C 2006 Phys. Rev. Lett. 96 075005
|
[23] |
Kim K Y, Taylor A J, Glownia J H and Rodriguez G 2008 Nat. Photon. 2 605
|
[24] |
Loffler T, Jacob F and Roskos H G 2000 Appl. Phys. Lett. 77 453
|
[25] |
Houard A, Liu Y, Prade B, Tikhonchuk V T and Mysyrowicz A 2008 Phys. Rev. Lett. 100 255006
|
[26] |
Sun W F, Zhou Y S, Wang X K and Zhang Y 2008 Opt. Express 16 16573
|
[27] |
Wang W M, Sheng Z M, Dong X G, Du H W, Li Y T and Zhang J 2010 J. Appl. Phys. 107 023113
|
[28] |
Chen Y P, Wang T J, Marceau C, Theberge F, Chateauneuf M, Dubois J, Kosareva O and Chin S L 2009 Appl. Phys. Lett. 95 101101
|
[29] |
Wang T J, Marceau C, Chen Y P, Yuan S, Theberge F, Chateauneuf M, Dubois J and Chin S L 2010 Appl. Phys. Lett. 96 211113
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|