Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(6): 064705    DOI: 10.1088/1674-1056/ab8ac3
Special Issue: SPECIAL TOPIC — Active matters physics
SPECIAL TOPIC—Active matters physics Prev   Next  

Diffusion and collective motion of rotlets in 2D space

Daiki Matsunaga, Takumi Chodo, Takuma Kawai
Graduate School of Engineering Science, Osaka University, 5608531 Osaka, Japan
Abstract  We investigate the collective motion of rotlets that are placed in a single plane. Due to the hydrodynamic interactions, the particles move through the two-dimensional (2D) plane and we analyze these diffusive motions. By analyzing the scaling of the values, we predict that the diffusion coefficient scales with φ0.5, the average velocity with φ, and relaxation time of the velocity autocorrelation function with φ-1.5, where φ is the area fraction of the particles. In this paper, we find that the predicted scaling could be seen only when the initial particle position is homogeneous. The particle collective motions are different by starting the simulation from random initial positions, and the diffusion coefficient is the largest at a minimum volume fraction of our parameter range, φ=0.05. The deviations based on two initial positions can be explained by the frequency of the collision events. The particles collide during their movements and the inter-particle distances gradually increase. When the area fraction is large, the particles will result in relatively homogeneous configurations regardless of the initial positions because of many collision events. When the area fraction is small (φ < 0.25), on the other hand, two initial positions would fall into different local solutions because the rare collision events would not modify the inter-particle distances drastically. By starting from the homogeneous initial positions, the particles show the maximum diffusion coefficient at φ≈0.20. The diffusion coefficient starts to decrease from this area fraction because the particles start to collide and hinder each other from a critical fraction ~23%. We believe our current work contributes to a basic understanding of the collective motion of rotating units.
Keywords:  rotlet      diffusion      Stokes flow  
Received:  28 February 2020      Revised:  10 April 2020      Accepted manuscript online: 
PACS:  47.85.-g (Applied fluid mechanics)  
  83.10.-y (Fundamentals and theoretical)  
Fund: Project supported by JST, ACT-T Grant No. JPMJAX190S Japan and Multidisciplinary Research Laboratory System for Future Developments (MIRAI LAB).
Corresponding Authors:  Daiki Matsunaga     E-mail:  daiki.matsunaga@me.es.osaka-u.ac.jp

Cite this article: 

Daiki Matsunaga, Takumi Chodo, Takuma Kawai Diffusion and collective motion of rotlets in 2D space 2020 Chin. Phys. B 29 064705

[1] Tierno P, Muruganathan R and Fischer T M 2007 Phys. Rev. Lett. 98 028301
[2] Coughlan A C H and Bevan M A 2016 Phys. Rev. E 94 042613
[3] Pham A T, Zhuang Y, Detwiler P, Socolar J E S, Charbonneau P and Yellen B B 2017 Phys. Rev. E 95 052607
[4] Soni V, Bililign E S, Magkiriadou S, Sacanna S, Bartolo D, Shelley M J and Irvine W T 2019 Nat. Phys. 15 1188
[5] Driscoll M, Delmotte B, Youssef M, Sacanna S, Donev A and Chaikin P 2017 Nat. Phys. 13 375
[6] Kaiser A, Snezhko A and Aranson I S 2017 Sci. Adv. 3 e1601469
[7] Kokot G and Snezhko A 2018 Nat. Commun. 9 2344
[8] Massana-Cid H, Meng F, Matsunaga D, Golestanian R and Tierno P 2019 Nat. Comm. 10 2444
[9] Matsunaga D, Hamilton J K, Meng F, Bukin N, Martin E L, Ogrin F Y, Yeomans J M and Golestanian R 2019 Nat. Comm. 10 4696
[10] Kawai T, Matsunaga D, Meng F, Yeomans J M and Golestanian R 2020 arXiv:2003.05082
[11] Matsunaga D, Meng F, Zöttl A, Golestanian R and Yeomans J M 2017 Phys. Rev. Lett. 119 198002
[12] Matsunaga D, Zöttl A, Meng F, Golestanian R and Yeomans J M 2018 IMA J. Appl. Math. 83 767
[13] Meng F, Matsunaga D, Yeomans J M and Golestanian R 2019 Soft Matter 15 3864
[14] Petroff A P, Wu X L and Libchaber A 2015 Phys. Rev. Lett. 114 158102
[15] Chen X, Yang X, Yang M and Zhang H 2015 Europhys. Lett. 111 54002
[16] Pierce C, Wijesinghe H, Mumper E, Lower B, Lower S and Sooryakumar R 2018 Phys. Rev Lett. 121 188001
[17] Meng F, Matsunaga D and Golestanian R 2018 Phys. Rev. Lett. 120 188101
[18] Uchida N and Golestanian R 2010 Phys. Rev. Lett. 104 178103
[19] Goto Y and Tanaka H 2015 Nat. Commun. 6 5994
[20] Shen Z and Lintuvuori J S 2020 Phys. Rev. Res. 2 013358
[21] Nguyen N H, Klotsa D, Engel M and Glotzer S C 2014 Phys. Rev. Lett. 112 075701
[22] Yeo K, Lushi E and Vlahovska P M 2015 Phys. Rev. Lett. 114 188301
[23] Ai B Q, Shao Z Q and Zhong W R 2018 Soft Matter 14 4388
[24] Kim S and Karrila J S 1991 Microhydrodynamics - Principles and Selected Applications (New York: Dover Publications, Inc.)
[25] Durlofsky L, Brady J F and Bossis G 1987 J. Fluid Mech. 180 21
[26] Brady J F and Bossis G 1988 Annu. Rev. Fluid Mech. 20 111
[27] Lushi E and Vlahovska P M 2015 J. Nonlinear Sci. 25 1111
[28] Rotne J and Prager S 1969 J. Chem. Phys. 50 4831
[29] Yamakawa H 1970 J. Chem. Phys. 53 436
[30] Llopis I and Pagonabarraga I 2008 Eur. Phys. J. E 26 103
[1] Heterogeneous hydration patterns of G-quadruplex DNA
Cong-Min Ji(祭聪敏), Yusong Tu(涂育松), and Yuan-Yan Wu(吴园燕). Chin. Phys. B, 2023, 32(2): 028702.
[2] Anomalous diffusion in branched elliptical structure
Kheder Suleiman, Xuelan Zhang(张雪岚), Erhui Wang(王二辉),Shengna Liu(刘圣娜), and Liancun Zheng(郑连存). Chin. Phys. B, 2023, 32(1): 010202.
[3] Coercivity enhancement of sintered Nd-Fe-B magnets by grain boundary diffusion with Pr80-xAlxCu20 alloys
Zhe-Huan Jin(金哲欢), Lei Jin(金磊), Guang-Fei Ding(丁广飞), Shuai Guo(郭帅), Bo Zheng(郑波),Si-Ning Fan(樊思宁), Zhi-Xiang Wang(王志翔), Xiao-Dong Fan(范晓东), Jin-Hao Zhu(朱金豪),Ren-Jie Chen(陈仁杰), A-Ru Yan(闫阿儒), Jing Pan(潘晶), and Xin-Cai Liu(刘新才). Chin. Phys. B, 2023, 32(1): 017505.
[4] Phosphorus diffusion and activation in fluorine co-implanted germanium after excimer laser annealing
Chen Wang(王尘), Wei-Hang Fan(范伟航), Yi-Hong Xu(许怡红), Yu-Chao Zhang(张宇超), Hui-Chen Fan(范慧晨), Cheng Li(李成), and Song-Yan Cheng(陈松岩). Chin. Phys. B, 2022, 31(9): 098503.
[5] Improving sound diffusion in a reverberation tank using a randomly fluctuating surface
Qi Li(李琪), Dingding Xie(谢丁丁), Rui Tang(唐锐), Dajing Shang(尚大晶), and Zhichao Lv(吕志超). Chin. Phys. B, 2022, 31(6): 064302.
[6] Self-adaptive behavior of nunchakus-like tracer induced by active Brownian particles
Yi-Qi Xia(夏益祺), Guo-Qiang Feng(冯国强), and Zhuang-Lin Shen(谌庄琳). Chin. Phys. B, 2022, 31(4): 040204.
[7] Diffusion of a chemically active colloidal particle in composite channels
Xin Lou(娄辛), Rui Liu(刘锐), Ke Chen(陈科), Xin Zhou(周昕), Rudolf Podgornik, and Mingcheng Yang(杨明成). Chin. Phys. B, 2022, 31(4): 044704.
[8] Solid-liquid transition induced by the anisotropic diffusion of colloidal particles
Fu-Jun Lin(蔺福军), Jing-Jing Liao(廖晶晶), Jian-Chun Wu(吴建春), and Bao-Quan Ai(艾保全). Chin. Phys. B, 2022, 31(3): 036401.
[9] Time evolution law of a two-mode squeezed light field passing through twin diffusion channels
Hai-Jun Yu(余海军) and Hong-Yi Fan(范洪义). Chin. Phys. B, 2022, 31(2): 020301.
[10] AA-stacked borophene-graphene bilayer as an anode material for alkali-metal ion batteries with a superhigh capacity
Yi-Bo Liang(梁艺博), Zhao Liu(刘钊), Jing Wang(王静), and Ying Liu(刘英). Chin. Phys. B, 2022, 31(11): 116302.
[11] Diffusion dynamics in branched spherical structure
Kheder Suleiman, Xue-Lan Zhang(张雪岚), Sheng-Na Liu(刘圣娜), and Lian-Cun Zheng(郑连存). Chin. Phys. B, 2022, 31(11): 110202.
[12] Microwave absorption properties regulation and bandwidth formula of oriented Y2Fe17N3-δ@SiO2/PU composite synthesized by reduction-diffusion method
Hao Wang(王浩), Liang Qiao(乔亮), Zu-Ying Zheng(郑祖应), Hong-Bo Hao(郝宏波), Tao Wang(王涛), Zheng Yang(杨正), and Fa-Shen Li(李发伸). Chin. Phys. B, 2022, 31(11): 114206.
[13] Thermal apoptosis analysis considering injection behavior optimization and mass diffusion during magnetic hyperthermia
Yun-Dong Tang(汤云东), Jian Zou(邹建), Rodolfo C C Flesch(鲁道夫 C C 弗莱施), Tao Jin(金涛), and Ming-Hua He(何明华). Chin. Phys. B, 2022, 31(1): 014401.
[14] A new simplified ordered upwind method for calculating quasi-potential
Qing Yu(虞晴) and Xianbin Liu(刘先斌). Chin. Phys. B, 2022, 31(1): 010502.
[15] Analysis on diffusion-induced stress for multi-layer spherical core-shell electrodes in Li-ion batteries
Siyuan Yang(杨思源), Chuanwei Li(李传崴), Zhifeng Qi(齐志凤), Lipan Xin(辛立攀), Linan Li(李林安), Shibin Wang(王世斌), and Zhiyong Wang(王志勇). Chin. Phys. B, 2021, 30(9): 098201.
No Suggested Reading articles found!