PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES |
Prev
Next
|
|
|
Simulation of helium supersonic molecular beam injection in tokamak plasma |
Xue-Ke Wu(吴雪科)1, Zhan-Hui Wang(王占辉)2, Hui-Dong Li(李会东)1, Li-Ming Shi(石黎铭)1, Di Wan(万迪)1, Qun-Chao Fan(樊群超)1, Min Xu(许敏)2 |
1 School of Science, Key Laboratory of High Performance Scientific Computation, Xihua University, Chengdu 610039, China;
2 Southwestern Institute of Physics, Chengdu 610041, China |
|
|
Abstract To study helium (He) supersonic molecular beam injection (SMBI) into H-mode tokamak plasma, a simplified multicomponent-plasma model under the assumption of quasi-neutral condition is developed and implemented in the frame of BOUT ++. The simulation results show that He species propagate inwards after He SMBI, and are deposited at the bottom of the pedestal due to intensive ionization and weak spreading speed. It is found that almost all injected helium particles strip off all the bounded electrons. He species interact intensively with background plasma along the injection path during He SMBI, making deuterium ion density profile drop at the He-deposited location and resulting in a large electron temperature decreasing, but deuterium ion temperature decreasing a little at the top of the pedestal.
|
Received: 23 December 2019
Revised: 18 February 2020
Accepted manuscript online:
|
PACS:
|
52.25.Fi
|
(Transport properties)
|
|
52.25.Ya
|
(Neutrals in plasmas)
|
|
Fund: Project supported by the Chunhui Program of the Ministry of Education of China (Grant No. Z2017091), the Sichuan Provincial Science Foundation for Distinguished Young Leaders of Disciplines in Science and Technology, China (Grant Nos. 2019JDJQ0051 and 2019JDJQ0050), the National Natural Science Foundation of China (Grant Nos. 11575055 and 11605143), the Fund for Young Scientists of China, the Open Research Subjects of the Key Laboratory of Advanced Computation in Xihua University, China (Grant Nos. szjj2017-011 and szjj2017-012), and the Young Scholarship Plan of Xihua University, China (Grant No. 0220170201). |
Corresponding Authors:
Zhan-Hui Wang, Hui-Dong Li
E-mail: zhwang@swip.ac.cn;huidongli@mail.xhu.edu.cn
|
Cite this article:
Xue-Ke Wu(吴雪科), Zhan-Hui Wang(王占辉), Hui-Dong Li(李会东), Li-Ming Shi(石黎铭), Di Wan(万迪), Qun-Chao Fan(樊群超), Min Xu(许敏) Simulation of helium supersonic molecular beam injection in tokamak plasma 2020 Chin. Phys. B 29 065201
|
[1] |
Pacher G, Pacher H, Kukushkin A, Janeschitz G and Pereverzev G 2003 Nucl. Fusion 43 188
|
[2] |
Loarte A, Saibene G, Sartori R, Campbell D, Becoulet M, Horton L, Eich T, Herrmann A, Matthews G and Asakura N 2003 Plasma Phys. Control. Fusion 45 1549
|
[3] |
Baylor L R, Commaux N, Jernigan T C, Brooks N, Combs S K, Evans T, Fenstermacher M, Isler R, Lasnier C and Meitner S 2013 Phys. Rev. Lett. 110 245001
|
[4] |
Wade M, Nazikian R, Degrassie J, Evans T, Ferraro N, Moyer R, Orlov D, Buttery R, Fenstermacher M and Garofalo A 2015 Nucl. Fusion 55 023002
|
[5] |
Kallenbach A, Dux R, Fuchs J, Fischer R, Geiger B, Giannone L, Herrmann A, Lunt T, Mertens V and McDermott R 2010 Plasma Phys. Control. Fusion 52 055002
|
[6] |
Zhong W L, Zou X L, Gao J M, Shi Z B, Feng B B, Cui Z Y, Xu M, Shen Y, Dong J Q and Ding X T 2017 Plasma Phys. Control. Fusion 59 014030
|
[7] |
Yang Z C, Shi Z B, Zhong W L, Zhang B Y, Fan Q C, Li H D, Jiang M, Shi P W, Chen C Y, Chen W, Liu Z T, Yu D L, Zhou Y, Feng B B, Song X M, Ding X T, Yang Q W, Duan X R and HL-2A Team 2016 Phys. Plasmas 23 012515
|
[8] |
Ma Q, Yu D L, Chen C Y, Wei Y L, Zhong W L, Zou X L, Zuo H Y, Du J L, Liu L and Dong C F 2016 Nucl. Fusion 56 126008
|
[9] |
Chen D L, Shen B, Granetz R S, Qian J P, Zhuang H D, Zeng L, Duan Y, Shi T, Wang H and Sun Y 2018 Nucl. Fusion 58 036003
|
[10] |
Xu X Q, Nevins W M, Cohen R H, Rognlien T D and Umansky M V 2004 Contrib. Plasma Phys. 44 105
|
[11] |
Yuan B, Xu M, Yu Y, Zang L, Hong R, Chen C, Wang Z, Nie L, Ke R, Guo D, Wu Y, Long T, Gong S, Liu H, Ye M, Duan X and HL-2A Team 2018 J. Instrum. 13 C03033
|
[12] |
Stotler D P, Boedo J, LeBlanc B, Maqueda R J and Zweben S J 2007 J. Nucl. Mater. 363 686
|
[13] |
Schmitz L, Merriman B, Blush L, Lehmer R, Conn R, Doerner R, Grossman A and Najmabadi F 1995 Phys. Plasmas 2 3081
|
[14] |
Varoutis S, Gleason-González C, Moulton D, Kruezi U, Groth M, Day C, Wiesen S, Harting D and Contributors J 2017 Fusion Eng. Des. 121 13
|
[15] |
Reiter D, May C, Baelmans M and Börner P 2018 Nucl. Fusion 58 126005
|
[16] |
Zhang W, Franke T, Noterdaeme J M and Van Eester D 2018 Nucl. Fusion 58 126005
|
[17] |
Simonini R, Corrigan G, Radford G, Spence J and Taroni A 1994 Contrib. Plasma Phys. 34 368
|
[18] |
Schneider R, Bonnin X, Borrass K, Coster D, Kastelewicz H, Reiter D, Rozhansky V and Braams B 2006 Contrib. Plasma Phys. 46 3
|
[19] |
Wiesen S, Reiter D, Kotov V, Baelmans M, Dekeyser W, Kukushkin A, Lisgo S, Pitts R, Rozhansky V and Saibene G 2015 J. Nucl. Mater. 463 480
|
[20] |
Stotler D P, Karney C F F, Rensink M E and Rognlien T D 2000 Contrib. Plasma Phys. 40 221
|
[21] |
Anders J, Magi V and Abraham J 2007 Comput. Fluids 36 1609
|
[22] |
Porton M, Shapiro E and Drikakis D 2010 Fusion Eng. Des. 85 789
|
[23] |
Xu X Q, Umansky M V, Dudson B and Snyder P B 2008 Commun. Comput. Phys. 4 949
|
[24] |
Umansky M V, Xu X Q, Dudson B, LoDestro L L and Myra J R 2009 Comput. Phys. Commun. 180 887
|
[25] |
Dudson B D, Umansky M V, Xu X Q, Snyder P B and Wilson H R 2009 Comput. Phys. Commun. 180 1467
|
[26] |
Wang Z H, Xu X Q, Xia T Y and Rognlien T D 2014 Nucl. Fusion 54 043019
|
[27] |
Wu X K, Li H D, Wang Z H, Feng H and Zhou Y L 2017 Chin. Phys. B 26 065201
|
[28] |
Xiao X T, Xu X Q and Gui B 2019 Commun. Comput. Phys. 26 913
|
[29] |
Zhdanov V M 2002 Transport processes in multicomponent plasma (London: CRC Press)
|
[30] |
Zhang K, Cui Z Y, Sun P, Dong C F, Deng W, Dong Y B, Song S D, Jiang M, Li Y G and Lu P 2016 Chin. Phys. B 25 065202
|
[31] |
Tazima T, Nakamura Y and Inoue K 1977 Nucl. Fusion 17 419
|
[32] |
Sun T T, Chen S Y, Wang Z H, Peng X D, Huang J, Mou M L and Tang C J 2015 Chin. Phys. Lett. 32 035201
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|