Abstract We consider a self-assembled hybrid system, composed of a bilayer vesicle to which a number of colloids are adhered. Based on known results of membrane curvature elasticity, we predict that, for sufficiently deflated prolate vesicles, the colloids can self-assemble into a ring at a finite distance away from the vesicle equator, thus breaking the up-down symmetry in the system. Because the relative variation of the position of the colloidal ring along the vesicle endows the system with an effective elasticity, periodic cycles of inflation and deflation can lead to non-reciprocal shape changes of the vesicle-colloid hybrid, allowing it to swim in a low Reynolds number environment under reciprocal actuation. We design several actuation protocols that allow control over the swimming direction.
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.