Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(1): 018707    DOI: 10.1088/1674-1056/25/1/018707
Special Issue: TOPICAL REVIEW — 8th IUPAP International Conference on Biological Physics
TOPICAL REVIEW—8th IUPAP International Conference on Biological Physics Prev   Next  

Multiscale molecular dynamics simulations of membrane remodeling by Bin/Amphiphysin/Rvs family proteins

Chun Chan(陈骏)1,2, Haohua Wen(文豪华)1, Lanyuan Lu(鲁兰原)3, Jun Fan(范俊)1,2
1. Department of Physics and Materials Science, City University of Hong Kong, Hong Kong, China;
2. City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China;
3. School of Biological Sciences, Nanyang Technological University, Singapore
Abstract  Membrane curvature is no longer thought of as a passive property of the membrane; rather, it is considered as an active, regulated state that serves various purposes in the cell such as between cells and organelle definition. While transport is usually mediated by tiny membrane bubbles known as vesicles or membrane tubules, such communication requires complex interplay between the lipid bilayers and cytosolic proteins such as members of the Bin/Amphiphysin/Rvs (BAR) superfamily of proteins. With rapid developments in novel experimental techniques, membrane remodeling has become a rapidly emerging new field in recent years. Molecular dynamics (MD) simulations are important tools for obtaining atomistic information regarding the structural and dynamic aspects of biological systems and for understanding the physics-related aspects. The availability of more sophisticated experimental data poses challenges to the theoretical community for developing novel theoretical and computational techniques that can be used to better interpret the experimental results to obtain further functional insights. In this review, we summarize the general mechanisms underlying membrane remodeling controlled or mediated by proteins. While studies combining experiments and molecular dynamics simulations recall existing mechanistic models, concurrently, they extend the role of different BAR domain proteins during membrane remodeling processes. We review these recent findings, focusing on how multiscale molecular dynamics simulations aid in understanding the physical basis of BAR domain proteins, as a representative of membrane-remodeling proteins.
Keywords:  membrane curvature      membrane remodeling protein      molecular dynamics      coarse-graining  
Received:  18 May 2015      Revised:  26 August 2015      Accepted manuscript online: 
PACS:  87.15.ap (Molecular dynamics simulation)  
  87.15.H- (Dynamics of biomolecules)  
  87.15.K- (Molecular interactions; membrane-protein interactions)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 21403182) and the Research Grants Council of Hong Kong, China (Grant No. CityU 21300014).
Corresponding Authors:  Jun Fan     E-mail:

Cite this article: 

Chun Chan(陈骏), Haohua Wen(文豪华), Lanyuan Lu(鲁兰原), Jun Fan(范俊) Multiscale molecular dynamics simulations of membrane remodeling by Bin/Amphiphysin/Rvs family proteins 2016 Chin. Phys. B 25 018707

[1] Pichot C S, Arvanitis C, Hartig S M, Jensen S A, Bechill J, Marzouk S, Yu J, Frost J A and Corey S J 2010 Cancer Res. 70 8347
[2] Hu J, Mukhopadhyay A and Craig A W B 2011 J. Biol. Chem. 286 2261
[3] Teasdale R D and Collins B M 2012 Biochem. J. 441 39
[4] Roth T F, Roth T F, Porter K R and Porter K R 1964 J. Cell Biol. 20 313
[5] Takei K, Slepnev V I, Haucke V and De Camilli P 1999 Nat. Cell Biol. 1 33
[6] Wendland B, Steece K E and Emr S D 1999 EMBO J. 18 4383
[7] Ford M G J, Mills I G, Peter B J, Vallis Y, Praefcke G J K, Evans P R and McMahon H T 2002 Nature 419 361
[8] Peter B J, Kent H M, Mills I G, Vallis Y, Butler P J G, Evans P R and McMahon H T 2004 Science 303 495
[9] Shimada A, Niwa H, Tsujita K, Suetsugu S, Nitta K, Hanawa-Suetsugu K, Akasaka R, Nishino Y, Toyama M, Chen L, Liu Z J, Wang B C, Yamamoto M, Terada T, Miyazawa A, Tanaka A, Sugano S, Shirouzu M, Nagayama K, Takenawa T and Yokoyama S 2007 Cell 129 761
[10] Cooke I R and Deserno M 2006 Biophys. J. 91 487
[11] McMahon H T and Boucrot E 2015 J. Cell Sci. 128 1065
[12] Kirchhausen T 2000 Nat. Rev. Mol. Cell Biol. 1 187
[13] McMahon H T and Boucrot E 2011 Nat. Rev. Mol. Cell Biol. 12 517
[14] Fertuck H C and Salpeter M M 1974 Proceedings of the National Academy of Sciences 71 1376
[15] MacKinnon R 2003 FEBS Lett. 555 62
[16] Unwin N 2005 J. Mol. Biol. 346 967
[17] Aimon S, Callan-Jones A, Berthaud A, Pinot M, Toombes G E S and Bassereau P 2014 Dev. Cell 28 212
[18] Fribourg P F, Chami M, Sorzano C O S, Gubellini F, Marabini R, Marco S, Jault J M and Lévy D 2014 J. Mol. Biol. 426 2059
[19] Doherty G J and McMahon H T 2008 Annu. Rev. Biophys. 37 65.
[20] Leikin S, Kozlov M M, Fuller N L and Rand R P 1996 Biophys. J. 71 2623
[21] Ford M G, Pearse B M, Higgins M K, Vallis Y, Owen D J, Gibson A, Hopkins C R, Evans P R and McMahon H T 2001 Science 291 1051
[22] Di Paolo G and De Camilli P 2006 Nature 443 651
[23] Chernomordik L V and Kozlov M M 2003 Annu. Rev. Biochem. 72 175
[24] Zimmerberg J and Kozlov M M 2006 Nat. Rev. Mol. Cell Biol. 7 9
[25] Bigay J and Antonny B 2012 Dev. Cell 23 886
[26] Pinot M, Vanni S, Pagnotta S, Lacas-Gervais S, Payet L A, Ferreira T, Gautier R, Goud B, Antonny B and Barelli H 2014 Science 345 693
[27] Rao Y and Haucke V 2011 Cellular Mol. Life Sci. 68 3983
[28] Mim C and Unger V M 2012 Trends Biochem. Sci. 37 526
[29] Hinshaw J E and Schmid S L 1995 Nature 374 190
[30] McMahon H T and Gallop J L 2005 Nature 438 590
[31] Zimmerberg J and McLaughlin S 2004 Curr. Biol. 14 R250
[32] Bhatia V K, Madsen K L, Bolinger P Y, Kunding A, Hedegård P, Gether U and Stamou D 2009 EMBO J. 28 3303
[33] Cui H, Lyman E and Voth G A 2011 Biophys. J. 100 1271
[34] Farsad K, Ringstad N, Takei K, Floyd S R, Rose K and De Camilli P 2001 J. Cell Biol. 155 193
[35] Razzaq A, Robinson I M, McMahon H T, Skepper J N, Su Y, Zelhof A C, Jackson A P, Gay N J and O'Kane C J 2001 Genes & Development 15 2967
[36] Richnau N, Fransson A, Farsad K and Aspenström P 2004 Biochem. Biophys. Res. Commun. 320 1034
[37] Marks B, Stowell M H, Vallis Y, Mills I G, Gibson A, Hopkins C R and McMahon H T 2001 Nature 410 231
[38] Wigge P, Köhler K, Vallis Y, Doyle C A, Owen D, Hunt S P and McMahon H T 1997 Mol. Biol. Cell 8 2003
[39] Sweitzer S M and Hinshaw J E 1998 Cell 93 1021
[40] Campelo F, McMahon H T and Kozlov M M 2008 Biophys. J. 95 2325
[41] McMahon H T, Kozlov M M and Martens S 2010 Cell 140 601
[42] Drin G and Antonny B 2010 FEBS Lett. 584 1840
[43] Martens S, Kozlov M M and McMahon H T 2007 Science 316 1205
[44] Hui E, Johnson C P, Yao J, Dunning F M and Chapman E R 2009 Cell 138 709
[45] Groffen A J, Martens S, Díez Arazola R, Cornelisse L N, Lozovaya N, de Jong A P H, Goriounova N A, Habets R L P, Takai Y, Borst J G, Brose N, McMahon H T and Verhage M 2010 Science 327 1614
[46] Daumke O, Lundmark R, Vallis Y, Martens S, Butler P J G and McMahon H T 2007 Nature 449 923
[47] Plomann M, Wittmann J G and Rudolph M G 2010 J. Mol. Biol. 400 129
[48] Copic A, Latham C F, Horlbeck M A, D'Arcangelo J G and Miller E A 2012 Science 335 1359
[49] Boudin H, Doan A, Xia J, Shigemoto R, Huganir R L, Worley P and Craig A M 2000 Neuron 28 485
[50] Eckler S A, Kuehn R and Gautam M 2005 Neuroscience 131 661
[51] Ehrlich M, Boll W, van Oijen A, Hariharan R, Chandran K, Nibert M L and Kirchhausen T 2004 Cell 118 591
[52] Stachowiak J C, Schmid E M, Ryan C J, Ann H S, Sasaki D Y, Sherman M B, Geissler P L, Fletcher D A and Hayden C C 2012 Nat. Cell Biol. 14 944
[53] Kozlov M M, Campelo F, Liska N, Chernomordik L V, Marrink S J and McMahon H T 2014 Curr. Opin. Cell Biol. 29 53
[54] Frost A, Perera R, Roux A, Spasov K, Destaing O, Egelman E H, De Camilli P and Unger V M 2008 Cell 132 807
[55] Mim C, Cui H, Gawronski-Salerno J A, Frost A, Lyman E, Voth G A and Unger V M 2012 Cell 149 137
[56] Yin Y, Arkhipov A and Schulten K 2009 Structure 17 882
[57] Arkhipov A, Yin Y and Schulten K 2009 Biophys. J. 97 2727
[58] Yu H and Schulten K 2013 PLoS Comput. Biol. 9 e1002892
[59] Praefcke G J K and McMahon H T 2004 Nat. Rev. Mol. Cell Biol. 5 133
[60] Ferguson S M and De Camilli P 2012 Nat. Rev. Mol. Cell Biol. 13 75
[61] Faelber K, Held M, Gao S, Posor Y, Haucke V, Noé F and Daumke O 2012 Structure 20 1621
[62] Morlot S and Roux A 2013 Annu. Rev. Biophys. 42 629
[63] Jensen D and Schekman R 2011 J. Cell Sci. 124 1
[64] Zanetti G, Pahuja K B, Studer S, Shim S and Schekman R 2012 Nat. Cell Biol. 14 20
[65] Shibata Y, Hu J, Kozlov M M and Rapoport T A 2009 Annu. Rev. Cell Dev. Biol. 25 329
[66] Hu J, Prinz W A and Rapoport T A 2011 Cell 147 1226
[67] Parton R G and del Pozo M A 2013 Nat. Rev. Mol. Cell Biol. 14 98
[68] Sheetz M P 2001 Nat. Rev. Mol. Cell Biol. 2 392
[69] Rohn J L and Baum B 2010 J. Cell Sci. 123 155
[70] Leduc C, Campás O, Joanny J F, Prost J and Bassereau P 2010 Biochimica et Biophysica Acta 1798 1418
[71] Ren G, Vajjhala P, Lee J S, Winsor B and Munn A L 2006 Microbiol. Mol. Biol. Rev. 70 37
[72] Qualmann B, Koch D and Kessels M M 2011 EMBO J. 30 3501
[73] Isas J M, Ambroso M R, Hegde P B, Langen J and Langen R 2015 Structure 23 873
[74] Gallop J L, Jao C C, Kent H M, Butler P J G, Evans P R, Langen R and McMahon H T 2006 EMBO J. 25 2898
[75] B D, M T and S L 2011 Biochem. J. 433 75
[76] Tarricone C, Xiao B, Justin N, Walker P A, Rittinger K, Gamblin S J and Smerdon S J 2001 Nature 411 215
[77] Weissenhorn W 2005 J. Mol. Biol. 351 653
[78] Heath R J W and Insall R H 2008 J. Cell Sci. 121 1951
[79] Roberts-Galbraith R H and Gould K L 2010 Cell Cycle 9 4091
[80] Pang X, Fan J, Zhang Y, Zhang K, Gao B, Ma J and Li J 2014 Dev. Cell 31 73
[81] Saarikangas J, Zhao H, Inen A P l, Ki P L, Mattila P K, Kinnunen P K J, Butcher S J and Lappalainen P 2009 Curr. Biol. 19 95
[82] Zhao H, Pykäläinen A and Lappalainen P 2011 Curr. Opin. Cell Biol. 23 14
[83] Pykäläinen A, Boczkowska M, Zhao H, Saarikangas J, Rebowski G, Jansen M, Hakanen J, Koskela E V, Peränen J, Vihinen H, Jokitalo E, Salminen M, Ikonen E, Dominguez R and Lappalainen P 2011 Nat. Struct. Mol. Biol. 18 902
[84] McCammon J A, Gelin B R and Karplus M 1977 Nature 267 585
[85] Karplus M and McCammon J A 2002 Nat. Struct. Biol. 9 646
[86] Brooks B R, Bruccoleri R E, Olafson B D, States D J, Swaminathan S and Karplus M 1983 J. Comput. Chem. 4 187
[87] Weiner P K and Kollman P A 1981 J. Comput. Chem. 2 287
[88] MacKerell A D, Bashford D, Bellott M, Dunbrack R L, Evanseck J D, Field M J, Fischer S, Gao J, Guo H, Ha S, Joseph-McCarthy D, Kuchnir L, Kuczera K, Lau F T K, Mattos C, Michnick S, Ngo T, Nguyen D T, Prodhom B, Reiher W E, Roux B, Schlenkrich M, Smith J C, Stote R, Straub J, Watanabe M, Wiórkiewicz-Kuczera J, Yin D and Karplus M 1998 J. Phys. Chem. B 102 3586
[89] Phillips J C, Braun R, Wang W, Gumbart J, Tajkhorshid E, Villa E, Chipot C, Skeel R D, Kale L and Schulten K 2005 J. Comput. Chem. 26 1781
[90] van Der Spoel D, Lindahl E, Hess B, Groenhof G, Mark A E and Berendsen H J C 2005 J. Comput. Chem. 26 1701
[91] Blood P D and Voth G A 2006 Proceedings of the National Academy of Sciences 103 15068
[92] Blood P D, Swenson R D and Voth G A 2008 Biophys. J. 95 1866
[93] Arkhipov A, Yin Y and Schulten K 2008 Biophys. J. 95 2806
[94] Ayton G S, Blood P D and Voth G A 2007 Biophys. J. 92 3595
[95] Ayton G S, Lyman E, Krishna V, Mim C, Unger V M and Voth G A 2009 Biophys. J. 97 1616
[96] Masuda M, Takeda S, Sone M, Ohki T and Mori H 2006 EMBO J. 25 2889
[97] Cui H, Ayton G S and Voth G A 2009 Biophys. J. 97 2746
[98] Cui H, Mim C, Vázquez F X, Lyman E and Unger V M 2013 Biophys. J. 104 404
[99] Fütterer K and Machesky L M 2007 Cell 129 655
[100] Henne W M, Kent H M, Ford M G J, Hegde B G, Daumke O, Butler P J G, Mittal R, Langen R, Evans P R and McMahon H T 2007 Structure 15 839
[101] Henne W M, Boucrot E, Meinecke M, Evergren E, Vallis Y, Mittal R and McMahon H T 2010 Science 328 1281
[102] Frost A, Unger V M and de Camilli P 2009 Cell 137 191
[103] Quinones G A and Oro A E 2010 Cell Cycle 9 2522
[104] Lumb C N, He J, Xue Y, Stansfeld P J, Stahelin R V, Kutateladze T G and Sansom M S P 2011 Structure 19 1338
[105] Lai C L, Srivastava A, Pilling C, Chase A R, Falke J J and Voth G A 2013 J. Mol. Biol. 425 3073
[106] Arkhipov A, Freddolino P L and Schulten K 2006 Structure 14 1767
[107] Martinetz T and Schulten K 1994 Neural Netw. 7 507
[108] Simunovic M, Srivastava A and Voth G A 2013 Proceedings of the National Academy of Sciences 110 20396
[109] Zhang Z, Lu L, Noid W G, Krishna V, Pfaendtner J and Voth G A 2008 Biophys. J. 95 5073
[110] Zhang Z, Pfaendtner J, Grafmuller A and Voth G A 2009 Biophys. J. 97 2327
[111] Izvekov S and Voth G A 2005 J. Phys. Chem. B 109 2469
[112] Lu L and Voth G A 2009 J. Phys. Chem. B 113 1501
[113] Srivastava A and Voth G A 2013 J. Chem. Theor. Comput. 9 750
[114] Srivastava A and Voth G A 2014 J. Chem. Theor. Comput. 10 4730
[115] Lyman E, Pfaendtner J and Voth G A 2008 Biophys. J. 95 4183
[116] Ayton G S, McWhirter J L and Voth G A 2006 J. Chem. Phys. 124 64906
[117] Ayton G S and Voth G A 2009 Curr. Opin. Struct. Biol. 19 138
[118] Simunovic M, Mim C, Marlovits T C, Resch G, Unger V M and Voth G A 2013 Biophys. J. 105 711
[119] Pylypenko O, Lundmark R, Rasmuson E, Carlsson S R and Rak A 2007 EMBO J. 26 4788
[120] Wang Q, Kaan H Y K, Hooda R N, Goh S L and Sondermann H 2008 Structure 16 1574
[121] Psachoulia E and Sansom M S P 2009 Biochemistry 48 5090
[122] Dannhauser P N and Ungewickell E J 2012 Nat. Cell Biol. 14 634
[1] Molecular dynamics study of interactions between edge dislocation and irradiation-induced defects in Fe–10Ni–20Cr alloy
Tao-Wen Xiong(熊涛文), Xiao-Ping Chen(陈小平), Ye-Ping Lin(林也平), Xin-Fu He(贺新福), Wen Yang(杨文), Wang-Yu Hu(胡望宇), Fei Gao(高飞), and Hui-Qiu Deng(邓辉球). Chin. Phys. B, 2023, 32(2): 020206.
[2] Formation of nanobubbles generated by hydrate decomposition: A molecular dynamics study
Zilin Wang(王梓霖), Liang Yang(杨亮), Changsheng Liu(刘长生), and Shiwei Lin(林仕伟). Chin. Phys. B, 2023, 32(2): 023101.
[3] Prediction of flexoelectricity in BaTiO3 using molecular dynamics simulations
Long Zhou(周龙), Xu-Long Zhang(张旭龙), Yu-Ying Cao(曹玉莹), Fu Zheng(郑富), Hua Gao(高华), Hong-Fei Liu(刘红飞), and Zhi Ma(马治). Chin. Phys. B, 2023, 32(1): 017701.
[4] Adsorption dynamics of double-stranded DNA on a graphene oxide surface with both large unoxidized and oxidized regions
Mengjiao Wu(吴梦娇), Huishu Ma(马慧姝), Haiping Fang(方海平), Li Yang(阳丽), and Xiaoling Lei(雷晓玲). Chin. Phys. B, 2023, 32(1): 018701.
[5] Effect of spatial heterogeneity on level of rejuvenation in Ni80P20 metallic glass
Tzu-Chia Chen, Mahyuddin KM Nasution, Abdullah Hasan Jabbar, Sarah Jawad Shoja, Waluyo Adi Siswanto, Sigiet Haryo Pranoto, Dmitry Bokov, Rustem Magizov, Yasser Fakri Mustafa, A. Surendar, Rustem Zalilov, Alexandr Sviderskiy, Alla Vorobeva, Dmitry Vorobyev, and Ahmed Alkhayyat. Chin. Phys. B, 2022, 31(9): 096401.
[6] Spatial correlation of irreversible displacement in oscillatory-sheared metallic glasses
Shiheng Cui(崔世恒), Huashan Liu(刘华山), and Hailong Peng(彭海龙). Chin. Phys. B, 2022, 31(8): 086108.
[7] Effect of void size and Mg contents on plastic deformation behaviors of Al-Mg alloy with pre-existing void: Molecular dynamics study
Ning Wei(魏宁), Ai-Qiang Shi(史爱强), Zhi-Hui Li(李志辉), Bing-Xian Ou(区炳显), Si-Han Zhao(赵思涵), and Jun-Hua Zhao(赵军华). Chin. Phys. B, 2022, 31(6): 066203.
[8] Strengthening and softening in gradient nanotwinned FCC metallic multilayers
Yuanyuan Tian(田圆圆), Gangjie Luo(罗港杰), Qihong Fang(方棋洪), Jia Li(李甲), and Jing Peng(彭静). Chin. Phys. B, 2022, 31(6): 066204.
[9] Investigation of the structural and dynamic basis of kinesin dissociation from microtubule by atomistic molecular dynamics simulations
Jian-Gang Wang(王建港), Xiao-Xuan Shi(史晓璇), Yu-Ru Liu(刘玉如), Peng-Ye Wang(王鹏业),Hong Chen(陈洪), and Ping Xie(谢平). Chin. Phys. B, 2022, 31(5): 058702.
[10] Impact of thermostat on interfacial thermal conductance prediction from non-equilibrium molecular dynamics simulations
Song Hu(胡松), C Y Zhao(赵长颖), and Xiaokun Gu(顾骁坤). Chin. Phys. B, 2022, 31(5): 056301.
[11] Evolution of defects and deformation mechanisms in different tensile directions of solidified lamellar Ti-Al alloy
Yutao Liu(刘玉涛), Tinghong Gao(高廷红), Yue Gao(高越), Lianxin Li(李连欣), Min Tan(谭敏), Quan Xie(谢泉), Qian Chen(陈茜), Zean Tian(田泽安), Yongchao Liang(梁永超), and Bei Wang(王蓓). Chin. Phys. B, 2022, 31(4): 046105.
[12] Evaluation on performance of MM/PBSA in nucleic acid-protein systems
Yuan-Qiang Chen(陈远强), Yan-Jing Sheng(盛艳静), Hong-Ming Ding(丁泓铭), and Yu-Qiang Ma(马余强). Chin. Phys. B, 2022, 31(4): 048701.
[13] Molecular dynamics simulations of A-DNA in bivalent metal ions salt solution
Jingjing Xue(薛晶晶), Xinpeng Li(李新朋), Rongri Tan(谈荣日), and Wenjun Zong(宗文军). Chin. Phys. B, 2022, 31(4): 048702.
[14] Effect of the number of defect particles on the structure and dispersion relation of a two-dimensional dust lattice system
Rangyue Zhang(张壤月), Guannan Shi(史冠男), Hanyu Tang(唐瀚宇), Yang Liu(刘阳), Yanhong Liu(刘艳红), and Feng Huang(黄峰). Chin. Phys. B, 2022, 31(3): 035204.
[15] Molecular dynamics simulations on the wet/dry self-latching and electric fields triggered wet/dry transitions between nanosheets: A non-volatile memory nanostructure
Jianzhuo Zhu(朱键卓), Xinyu Zhang(张鑫宇), Xingyuan Li(李兴元), and Qiuming Peng(彭秋明). Chin. Phys. B, 2022, 31(2): 024703.
No Suggested Reading articles found!