Special Issue:
TOPICAL REVIEW — 8th IUPAP International Conference on Biological Physics
|
TOPICAL REVIEW—8th IUPAP International Conference on Biological Physics |
Prev
Next
|
|
|
Multiscale molecular dynamics simulations of membrane remodeling by Bin/Amphiphysin/Rvs family proteins |
Chun Chan(陈骏)1,2, Haohua Wen(文豪华)1, Lanyuan Lu(鲁兰原)3, Jun Fan(范俊)1,2 |
1. Department of Physics and Materials Science, City University of Hong Kong, Hong Kong, China; 2. City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China; 3. School of Biological Sciences, Nanyang Technological University, Singapore |
|
|
Abstract Membrane curvature is no longer thought of as a passive property of the membrane; rather, it is considered as an active, regulated state that serves various purposes in the cell such as between cells and organelle definition. While transport is usually mediated by tiny membrane bubbles known as vesicles or membrane tubules, such communication requires complex interplay between the lipid bilayers and cytosolic proteins such as members of the Bin/Amphiphysin/Rvs (BAR) superfamily of proteins. With rapid developments in novel experimental techniques, membrane remodeling has become a rapidly emerging new field in recent years. Molecular dynamics (MD) simulations are important tools for obtaining atomistic information regarding the structural and dynamic aspects of biological systems and for understanding the physics-related aspects. The availability of more sophisticated experimental data poses challenges to the theoretical community for developing novel theoretical and computational techniques that can be used to better interpret the experimental results to obtain further functional insights. In this review, we summarize the general mechanisms underlying membrane remodeling controlled or mediated by proteins. While studies combining experiments and molecular dynamics simulations recall existing mechanistic models, concurrently, they extend the role of different BAR domain proteins during membrane remodeling processes. We review these recent findings, focusing on how multiscale molecular dynamics simulations aid in understanding the physical basis of BAR domain proteins, as a representative of membrane-remodeling proteins.
|
Received: 18 May 2015
Revised: 26 August 2015
Accepted manuscript online:
|
PACS:
|
87.15.ap
|
(Molecular dynamics simulation)
|
|
87.15.H-
|
(Dynamics of biomolecules)
|
|
87.15.K-
|
(Molecular interactions; membrane-protein interactions)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 21403182) and the Research Grants Council of Hong Kong, China (Grant No. CityU 21300014). |
Corresponding Authors:
Jun Fan
E-mail: junfan@cityu.edu.hk
|
Cite this article:
Chun Chan(陈骏), Haohua Wen(文豪华), Lanyuan Lu(鲁兰原), Jun Fan(范俊) Multiscale molecular dynamics simulations of membrane remodeling by Bin/Amphiphysin/Rvs family proteins 2016 Chin. Phys. B 25 018707
|
[1] |
Pichot C S, Arvanitis C, Hartig S M, Jensen S A, Bechill J, Marzouk S, Yu J, Frost J A and Corey S J 2010 Cancer Res. 70 8347
|
[2] |
Hu J, Mukhopadhyay A and Craig A W B 2011 J. Biol. Chem. 286 2261
|
[3] |
Teasdale R D and Collins B M 2012 Biochem. J. 441 39
|
[4] |
Roth T F, Roth T F, Porter K R and Porter K R 1964 J. Cell Biol. 20 313
|
[5] |
Takei K, Slepnev V I, Haucke V and De Camilli P 1999 Nat. Cell Biol. 1 33
|
[6] |
Wendland B, Steece K E and Emr S D 1999 EMBO J. 18 4383
|
[7] |
Ford M G J, Mills I G, Peter B J, Vallis Y, Praefcke G J K, Evans P R and McMahon H T 2002 Nature 419 361
|
[8] |
Peter B J, Kent H M, Mills I G, Vallis Y, Butler P J G, Evans P R and McMahon H T 2004 Science 303 495
|
[9] |
Shimada A, Niwa H, Tsujita K, Suetsugu S, Nitta K, Hanawa-Suetsugu K, Akasaka R, Nishino Y, Toyama M, Chen L, Liu Z J, Wang B C, Yamamoto M, Terada T, Miyazawa A, Tanaka A, Sugano S, Shirouzu M, Nagayama K, Takenawa T and Yokoyama S 2007 Cell 129 761
|
[10] |
Cooke I R and Deserno M 2006 Biophys. J. 91 487
|
[11] |
McMahon H T and Boucrot E 2015 J. Cell Sci. 128 1065
|
[12] |
Kirchhausen T 2000 Nat. Rev. Mol. Cell Biol. 1 187
|
[13] |
McMahon H T and Boucrot E 2011 Nat. Rev. Mol. Cell Biol. 12 517
|
[14] |
Fertuck H C and Salpeter M M 1974 Proceedings of the National Academy of Sciences 71 1376
|
[15] |
MacKinnon R 2003 FEBS Lett. 555 62
|
[16] |
Unwin N 2005 J. Mol. Biol. 346 967
|
[17] |
Aimon S, Callan-Jones A, Berthaud A, Pinot M, Toombes G E S and Bassereau P 2014 Dev. Cell 28 212
|
[18] |
Fribourg P F, Chami M, Sorzano C O S, Gubellini F, Marabini R, Marco S, Jault J M and Lévy D 2014 J. Mol. Biol. 426 2059
|
[19] |
Doherty G J and McMahon H T 2008 Annu. Rev. Biophys. 37 65.
|
[20] |
Leikin S, Kozlov M M, Fuller N L and Rand R P 1996 Biophys. J. 71 2623
|
[21] |
Ford M G, Pearse B M, Higgins M K, Vallis Y, Owen D J, Gibson A, Hopkins C R, Evans P R and McMahon H T 2001 Science 291 1051
|
[22] |
Di Paolo G and De Camilli P 2006 Nature 443 651
|
[23] |
Chernomordik L V and Kozlov M M 2003 Annu. Rev. Biochem. 72 175
|
[24] |
Zimmerberg J and Kozlov M M 2006 Nat. Rev. Mol. Cell Biol. 7 9
|
[25] |
Bigay J and Antonny B 2012 Dev. Cell 23 886
|
[26] |
Pinot M, Vanni S, Pagnotta S, Lacas-Gervais S, Payet L A, Ferreira T, Gautier R, Goud B, Antonny B and Barelli H 2014 Science 345 693
|
[27] |
Rao Y and Haucke V 2011 Cellular Mol. Life Sci. 68 3983
|
[28] |
Mim C and Unger V M 2012 Trends Biochem. Sci. 37 526
|
[29] |
Hinshaw J E and Schmid S L 1995 Nature 374 190
|
[30] |
McMahon H T and Gallop J L 2005 Nature 438 590
|
[31] |
Zimmerberg J and McLaughlin S 2004 Curr. Biol. 14 R250
|
[32] |
Bhatia V K, Madsen K L, Bolinger P Y, Kunding A, Hedegård P, Gether U and Stamou D 2009 EMBO J. 28 3303
|
[33] |
Cui H, Lyman E and Voth G A 2011 Biophys. J. 100 1271
|
[34] |
Farsad K, Ringstad N, Takei K, Floyd S R, Rose K and De Camilli P 2001 J. Cell Biol. 155 193
|
[35] |
Razzaq A, Robinson I M, McMahon H T, Skepper J N, Su Y, Zelhof A C, Jackson A P, Gay N J and O'Kane C J 2001 Genes & Development 15 2967
|
[36] |
Richnau N, Fransson A, Farsad K and Aspenström P 2004 Biochem. Biophys. Res. Commun. 320 1034
|
[37] |
Marks B, Stowell M H, Vallis Y, Mills I G, Gibson A, Hopkins C R and McMahon H T 2001 Nature 410 231
|
[38] |
Wigge P, Köhler K, Vallis Y, Doyle C A, Owen D, Hunt S P and McMahon H T 1997 Mol. Biol. Cell 8 2003
|
[39] |
Sweitzer S M and Hinshaw J E 1998 Cell 93 1021
|
[40] |
Campelo F, McMahon H T and Kozlov M M 2008 Biophys. J. 95 2325
|
[41] |
McMahon H T, Kozlov M M and Martens S 2010 Cell 140 601
|
[42] |
Drin G and Antonny B 2010 FEBS Lett. 584 1840
|
[43] |
Martens S, Kozlov M M and McMahon H T 2007 Science 316 1205
|
[44] |
Hui E, Johnson C P, Yao J, Dunning F M and Chapman E R 2009 Cell 138 709
|
[45] |
Groffen A J, Martens S, Díez Arazola R, Cornelisse L N, Lozovaya N, de Jong A P H, Goriounova N A, Habets R L P, Takai Y, Borst J G, Brose N, McMahon H T and Verhage M 2010 Science 327 1614
|
[46] |
Daumke O, Lundmark R, Vallis Y, Martens S, Butler P J G and McMahon H T 2007 Nature 449 923
|
[47] |
Plomann M, Wittmann J G and Rudolph M G 2010 J. Mol. Biol. 400 129
|
[48] |
Copic A, Latham C F, Horlbeck M A, D'Arcangelo J G and Miller E A 2012 Science 335 1359
|
[49] |
Boudin H, Doan A, Xia J, Shigemoto R, Huganir R L, Worley P and Craig A M 2000 Neuron 28 485
|
[50] |
Eckler S A, Kuehn R and Gautam M 2005 Neuroscience 131 661
|
[51] |
Ehrlich M, Boll W, van Oijen A, Hariharan R, Chandran K, Nibert M L and Kirchhausen T 2004 Cell 118 591
|
[52] |
Stachowiak J C, Schmid E M, Ryan C J, Ann H S, Sasaki D Y, Sherman M B, Geissler P L, Fletcher D A and Hayden C C 2012 Nat. Cell Biol. 14 944
|
[53] |
Kozlov M M, Campelo F, Liska N, Chernomordik L V, Marrink S J and McMahon H T 2014 Curr. Opin. Cell Biol. 29 53
|
[54] |
Frost A, Perera R, Roux A, Spasov K, Destaing O, Egelman E H, De Camilli P and Unger V M 2008 Cell 132 807
|
[55] |
Mim C, Cui H, Gawronski-Salerno J A, Frost A, Lyman E, Voth G A and Unger V M 2012 Cell 149 137
|
[56] |
Yin Y, Arkhipov A and Schulten K 2009 Structure 17 882
|
[57] |
Arkhipov A, Yin Y and Schulten K 2009 Biophys. J. 97 2727
|
[58] |
Yu H and Schulten K 2013 PLoS Comput. Biol. 9 e1002892
|
[59] |
Praefcke G J K and McMahon H T 2004 Nat. Rev. Mol. Cell Biol. 5 133
|
[60] |
Ferguson S M and De Camilli P 2012 Nat. Rev. Mol. Cell Biol. 13 75
|
[61] |
Faelber K, Held M, Gao S, Posor Y, Haucke V, Noé F and Daumke O 2012 Structure 20 1621
|
[62] |
Morlot S and Roux A 2013 Annu. Rev. Biophys. 42 629
|
[63] |
Jensen D and Schekman R 2011 J. Cell Sci. 124 1
|
[64] |
Zanetti G, Pahuja K B, Studer S, Shim S and Schekman R 2012 Nat. Cell Biol. 14 20
|
[65] |
Shibata Y, Hu J, Kozlov M M and Rapoport T A 2009 Annu. Rev. Cell Dev. Biol. 25 329
|
[66] |
Hu J, Prinz W A and Rapoport T A 2011 Cell 147 1226
|
[67] |
Parton R G and del Pozo M A 2013 Nat. Rev. Mol. Cell Biol. 14 98
|
[68] |
Sheetz M P 2001 Nat. Rev. Mol. Cell Biol. 2 392
|
[69] |
Rohn J L and Baum B 2010 J. Cell Sci. 123 155
|
[70] |
Leduc C, Campás O, Joanny J F, Prost J and Bassereau P 2010 Biochimica et Biophysica Acta 1798 1418
|
[71] |
Ren G, Vajjhala P, Lee J S, Winsor B and Munn A L 2006 Microbiol. Mol. Biol. Rev. 70 37
|
[72] |
Qualmann B, Koch D and Kessels M M 2011 EMBO J. 30 3501
|
[73] |
Isas J M, Ambroso M R, Hegde P B, Langen J and Langen R 2015 Structure 23 873
|
[74] |
Gallop J L, Jao C C, Kent H M, Butler P J G, Evans P R, Langen R and McMahon H T 2006 EMBO J. 25 2898
|
[75] |
B D, M T and S L 2011 Biochem. J. 433 75
|
[76] |
Tarricone C, Xiao B, Justin N, Walker P A, Rittinger K, Gamblin S J and Smerdon S J 2001 Nature 411 215
|
[77] |
Weissenhorn W 2005 J. Mol. Biol. 351 653
|
[78] |
Heath R J W and Insall R H 2008 J. Cell Sci. 121 1951
|
[79] |
Roberts-Galbraith R H and Gould K L 2010 Cell Cycle 9 4091
|
[80] |
Pang X, Fan J, Zhang Y, Zhang K, Gao B, Ma J and Li J 2014 Dev. Cell 31 73
|
[81] |
Saarikangas J, Zhao H, Inen A P l, Ki P L, Mattila P K, Kinnunen P K J, Butcher S J and Lappalainen P 2009 Curr. Biol. 19 95
|
[82] |
Zhao H, Pykäläinen A and Lappalainen P 2011 Curr. Opin. Cell Biol. 23 14
|
[83] |
Pykäläinen A, Boczkowska M, Zhao H, Saarikangas J, Rebowski G, Jansen M, Hakanen J, Koskela E V, Peränen J, Vihinen H, Jokitalo E, Salminen M, Ikonen E, Dominguez R and Lappalainen P 2011 Nat. Struct. Mol. Biol. 18 902
|
[84] |
McCammon J A, Gelin B R and Karplus M 1977 Nature 267 585
|
[85] |
Karplus M and McCammon J A 2002 Nat. Struct. Biol. 9 646
|
[86] |
Brooks B R, Bruccoleri R E, Olafson B D, States D J, Swaminathan S and Karplus M 1983 J. Comput. Chem. 4 187
|
[87] |
Weiner P K and Kollman P A 1981 J. Comput. Chem. 2 287
|
[88] |
MacKerell A D, Bashford D, Bellott M, Dunbrack R L, Evanseck J D, Field M J, Fischer S, Gao J, Guo H, Ha S, Joseph-McCarthy D, Kuchnir L, Kuczera K, Lau F T K, Mattos C, Michnick S, Ngo T, Nguyen D T, Prodhom B, Reiher W E, Roux B, Schlenkrich M, Smith J C, Stote R, Straub J, Watanabe M, Wiórkiewicz-Kuczera J, Yin D and Karplus M 1998 J. Phys. Chem. B 102 3586
|
[89] |
Phillips J C, Braun R, Wang W, Gumbart J, Tajkhorshid E, Villa E, Chipot C, Skeel R D, Kale L and Schulten K 2005 J. Comput. Chem. 26 1781
|
[90] |
van Der Spoel D, Lindahl E, Hess B, Groenhof G, Mark A E and Berendsen H J C 2005 J. Comput. Chem. 26 1701
|
[91] |
Blood P D and Voth G A 2006 Proceedings of the National Academy of Sciences 103 15068
|
[92] |
Blood P D, Swenson R D and Voth G A 2008 Biophys. J. 95 1866
|
[93] |
Arkhipov A, Yin Y and Schulten K 2008 Biophys. J. 95 2806
|
[94] |
Ayton G S, Blood P D and Voth G A 2007 Biophys. J. 92 3595
|
[95] |
Ayton G S, Lyman E, Krishna V, Mim C, Unger V M and Voth G A 2009 Biophys. J. 97 1616
|
[96] |
Masuda M, Takeda S, Sone M, Ohki T and Mori H 2006 EMBO J. 25 2889
|
[97] |
Cui H, Ayton G S and Voth G A 2009 Biophys. J. 97 2746
|
[98] |
Cui H, Mim C, Vázquez F X, Lyman E and Unger V M 2013 Biophys. J. 104 404
|
[99] |
Fütterer K and Machesky L M 2007 Cell 129 655
|
[100] |
Henne W M, Kent H M, Ford M G J, Hegde B G, Daumke O, Butler P J G, Mittal R, Langen R, Evans P R and McMahon H T 2007 Structure 15 839
|
[101] |
Henne W M, Boucrot E, Meinecke M, Evergren E, Vallis Y, Mittal R and McMahon H T 2010 Science 328 1281
|
[102] |
Frost A, Unger V M and de Camilli P 2009 Cell 137 191
|
[103] |
Quinones G A and Oro A E 2010 Cell Cycle 9 2522
|
[104] |
Lumb C N, He J, Xue Y, Stansfeld P J, Stahelin R V, Kutateladze T G and Sansom M S P 2011 Structure 19 1338
|
[105] |
Lai C L, Srivastava A, Pilling C, Chase A R, Falke J J and Voth G A 2013 J. Mol. Biol. 425 3073
|
[106] |
Arkhipov A, Freddolino P L and Schulten K 2006 Structure 14 1767
|
[107] |
Martinetz T and Schulten K 1994 Neural Netw. 7 507
|
[108] |
Simunovic M, Srivastava A and Voth G A 2013 Proceedings of the National Academy of Sciences 110 20396
|
[109] |
Zhang Z, Lu L, Noid W G, Krishna V, Pfaendtner J and Voth G A 2008 Biophys. J. 95 5073
|
[110] |
Zhang Z, Pfaendtner J, Grafmuller A and Voth G A 2009 Biophys. J. 97 2327
|
[111] |
Izvekov S and Voth G A 2005 J. Phys. Chem. B 109 2469
|
[112] |
Lu L and Voth G A 2009 J. Phys. Chem. B 113 1501
|
[113] |
Srivastava A and Voth G A 2013 J. Chem. Theor. Comput. 9 750
|
[114] |
Srivastava A and Voth G A 2014 J. Chem. Theor. Comput. 10 4730
|
[115] |
Lyman E, Pfaendtner J and Voth G A 2008 Biophys. J. 95 4183
|
[116] |
Ayton G S, McWhirter J L and Voth G A 2006 J. Chem. Phys. 124 64906
|
[117] |
Ayton G S and Voth G A 2009 Curr. Opin. Struct. Biol. 19 138
|
[118] |
Simunovic M, Mim C, Marlovits T C, Resch G, Unger V M and Voth G A 2013 Biophys. J. 105 711
|
[119] |
Pylypenko O, Lundmark R, Rasmuson E, Carlsson S R and Rak A 2007 EMBO J. 26 4788
|
[120] |
Wang Q, Kaan H Y K, Hooda R N, Goh S L and Sondermann H 2008 Structure 16 1574
|
[121] |
Psachoulia E and Sansom M S P 2009 Biochemistry 48 5090
|
[122] |
Dannhauser P N and Ungewickell E J 2012 Nat. Cell Biol. 14 634
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|