Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(4): 048702    DOI: 10.1088/1674-1056/ab7d9f
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Effect of C60 nanoparticles on elasticity of small unilamellar vesicles composed of DPPC bilayers

Tanlin Wei(魏坦琳), Lei Zhang(张蕾), Yong Zhang(张勇)
School of Physics, Sun Yat-Sen University, Guangzhou 510275, China
Abstract  The interaction between C60 nanoparticles and biomembranes has been of great interest in researches over the past decades due to their novel applications as well as potential cytotoxicity. In this work, we study the deformation of the small unilamellar vesicles composed of dipalmitoylphosphatidylcholine (DPPC) lipid bilayers infiltrated with C60 nanoparticles of different molecular concentrations through coarse-grained molecular dynamics simulations. By employing the Helfrich spontaneous curvature model, the bending modulus and the spontaneous curvature of the vesicles with C60 nanoparticles of different concentrations are obtained according to the simulation data. The results show that the bending modulus and the spontaneous curvature of pure DPPC vesicle membranes are approximately 1.6×10-19 J and 1.4 nm-1, respectively. Both of them increase linearly approximately as the C60 concentration increases from 0 to 16.3%. The density profiles of vesicles, the order of lipid packing and the diffusion characteristics of DPPC and C60 are also investigated.
Keywords:  lipid vesicle      bending modulus      C60 nanoparticles      spontaneous curvature  
Received:  16 January 2020      Revised:  19 February 2020      Accepted manuscript online: 
PACS:  87.15.ap (Molecular dynamics simulation)  
  87.16.D- (Membranes, bilayers, and vesicles)  
  87.15.La (Mechanical properties)  
  87.10.Pq (Elasticity theory)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 61475196).
Corresponding Authors:  Lei Zhang, Yong Zhang     E-mail:  zhlei28@mail.sysu.edu.cn;zhyong9@mail.sysu.edu.cn

Cite this article: 

Tanlin Wei(魏坦琳), Lei Zhang(张蕾), Yong Zhang(张勇) Effect of C60 nanoparticles on elasticity of small unilamellar vesicles composed of DPPC bilayers 2020 Chin. Phys. B 29 048702

[1] Xia Y 2008 Nat. Mater. 7 758
[2] Mitragotri S and Lahann J 2009 Nat. Mater. 8 15
[3] Zeng Y H, Jiang W G and Qin Q H 2016 Acta Phys. Sin. 65 148802 (in Chinese)
[4] Li R, Liu T, Chen X, Chen S C, Fu Y H and Liu L 2018 Acta Phys. Sin. 67 190202 (in Chinese)
[5] Kausar A 2017 Polym.-Plast. Technol. Eng. 56 594
[6] Rašović I 2017 Mater. Sci. Technol. 33 777
[7] Jensen A W, Wilson S R and Schuster D I 1996 Bioorganic & Medicinal Chemistry 4 767
[8] Nel A, Xia T, Mädler L and Li N 2006 Science 311 622
[9] Powell M C and Kanarek M S 2006 Wisconsin Med. J. 105 18
[10] De Jong W H and Borm P J 2008 Int. J. Nanomedicine 3 133
[11] Sayes C M, Fortner J D, Guo W, Lyon D, Boyd A M, Ausman K D, Tao Y J, Sitharaman B, Wilson L J and Hughes J B 2004 Nano Lett. 4 1881
[12] Sayes C M, Gobin A M, Ausman K D, Mendez J, West J L and Colvin V L 2005 Biomaterials 26 7587
[13] Yamawaki H and Iwai N 2006 Am. J. Physiol.-Cell Physiol. 290 C1495
[14] Tsuchiya T, Oguri I, Yamakoshi Y N and Miyata N 1996 FEBS Lett. 393 139
[15] Sosnowska M, Kutwin M, Jaworski S, Strojny B, Wierzbicki M, Szczepaniak J, Lojkowski M, Święszkowski W, Balaban J and Chwalibog A 2019 Int. J. Nanomedicine 14 6197
[16] Karp G 2009 Cell and Molecular Biology: Concepts and Experiments (John Wiley & Sons)
[17] Li Z L 2018 Chin. Phys. B 27 038703
[18] Tanford C 1980 Hydrophobic Effect: Formation Micelles Biological Membranes 2d edn (New York: Wiley)
[19] Cevc G and Marsh D 1987 Phospholipid Bilayers: Physical Principles and Models (New York: Wiley)
[20] Li Y and ten Wolde P R 2019 Phys. Rev. Lett. 123 148003
[21] Stelter D and Keyes T 2019 Soft Matter 15 8102
[22] Hossann M, Syunyaeva Z, Schmidt R, Zengerle A, Eibl H, Issels R D and Lindner L H 2012 J. Controlled Release 162 400
[23] May J P and Li S D 2013 Expert Opinion Drug Delivery 10 511
[24] Fujie T and Yoshimoto M 2019 Soft Matter 15 9537
[25] Holme M N, Fedotenko I A, Abegg D, Althaus J, Babel L, Favarger F, Reiter R, Tanasescu R, Zaffalon P L, Ziegler A, Müller B, Saxer T and Zumbuehl A 2012 Nat. Nanotechnol. 7 536
[26] Garg S, Thomas A A and Borden M A 2013 Biomaterials 34 6862
[27] Saxer T, Zumbuehl A and Müller B 2013 Cardiovasc. Research 99 328
[28] Sun J, Zhang L, Wang J, Feng Q, Liu D, Yin Q, Xu D, Wei Y, Ding B and Shi X 2015 Adv. Mater. 27 1402
[29] Zhang X, Zhang Y, Zheng Y and Wang B 2013 Phys. Chem. Chem. Phys. 15 2473
[30] Drasler B, Drobne D, Sadeghpour A and Rappolt M 2015 Chem. Phys. Lipids 188 46
[31] Skorkina M Y, Sladkova E A, Shamray E A, Cherkashina O V, Evstigneev M P, Buchelnikov A S, Prylutskyy Y I and Ritter U 2015 Eur. Biophys. J. 44 493
[32] Zhou J, Liang D and Contera S 2015 Nanoscale 7 17102
[33] Li L, Davande H, Bedrov D and Smith G D 2007 J. Phys. Chem. B 111 4067
[34] Qiao R, Roberts A P, Mount A S, Klaine S J and Ke P C 2007 Nano Lett. 7 614
[35] Chang R W and Lee J M 2010 Bull. Korean Chem. Soc. 31 3195
[36] Jusufi A, DeVane R H, Shinoda W and Klein M L 2011 Soft Matter 7 1139
[37] Zhang S, Mu Y, Zhang J Z and Xu W 2013 PloS One 8 e77436
[38] Barnoud J, Rossi G and Monticelli L 2014 Phys. Rev. Lett. 112 068102
[39] Bozdaganyan M E, Orekhov P S, Shaytan A K and Shaitan K V 2014 PloS One 9 e102487
[40] Atilhan M, Costa L T and Aparicio S 2019 J. Mol. Liq. 295 111714
[41] Wong-Ekkabut J, Baoukina S, Triampo W, Tang I M, Tieleman D P and Monticelli L 2008 Nat. Nanotechnol. 3 363
[42] Xie L Q, Liu Y Z, Xi Z H, Li H Y, Liang S D and Zhu K L 2017 Mol. Simul. 43 1532
[43] Helfrich W 1973 Z. Naturforsch. C 28 693
[44] Lipowsky R 1999 Statistical Mechanics of Biocomplexity (Berlin: Springer) pp. 1-23
[45] Tu Z and Ou-Yang Z C 2003 Phys. Rev. E 68 061915
[46] Tu Z 2010 J. Chem. Phys. 132 084111
[47] Zhou X 2019 J. Phys.: Condens. Matter 31 315101
[48] Evans E and Rawicz W 1990 Phys. Rev. Lett. 64 2094
[49] Lindahl E and Edholm O 2000 Biophys. J. 79 426
[50] Rawicz W, Olbrich K, McIntosh T, Needham D and Evans E 2000 Biophys. J. 79 328
[51] Döbereiner H G, Gompper G, Haluska C K, Kroll D M, Petrov P G and Riske K A 2003 Phys. Rev. Lett. 91 048301
[52] Marrink S J, De Vries A H and Mark A E 2004 J. Phys. Chem. B 108 750
[53] Delorme N and Fery A 2006 Phys. Rev. E 74 030901
[54] Guler S D, Ghosh D D, Pan J, Mathai J C, Zeidel M L, Nagle J F and Tristram-Nagle S 2009 Chem. Phys. Lipids 160 33
[55] Picas L, Rico F and Scheuring S 2012 Biophys. J. 102 L01
[56] Bassereau P, Sorre B and Lévy A 2014 Adv. Colloid Interface Sci. 208 47
[57] Jablin M S, Akabori K and Nagle J F 2014 Phys. Rev. Lett. 113 248102
[58] Nagle J F, Jablin M S, Tristram-Nagle S and Akabori K 2015 Chem. Phys. Lipids 185 3
[59] Venable R M, Brown F L and Pastor R W 2015 Chem. Phys. Lipids 192 60
[60] Faizi H A, Frey S L, Steinkühler J, Dimova R and Vlahovska P M 2019 Soft Matter 15 6006
[61] Berendsen H J, van der Spoel D and van Drunen R 1995 Comput. Phys. Commun. 91 43
[62] Van Der Spoel D, Lindahl E, Hess B, Groenhof G, Mark A E and Berendsen H J 2005 J. Comput. Chem. 26 1701
[63] Abraham M J, Murtola T, Schulz R, Páll S, Smith J C, Hess B and Lindahl E 2015 Software X 1 19
[64] Marrink S J, Risselada H J, Yefimov S, Tieleman D P and De Vries A H 2007 J. Phys. Chem. B 111 7812
[65] Periole X and Marrink S J 2013 Biomolecular Simulations (Berlin: Springer) pp. 533-565
[66] Humphrey W, Dalke A and Schulten K 1996 J. Molecular Graphics 14 33
[67] Jo S, Kim T, Iyer V G and Im W 2008 J. Comput. Chem. 29 1859
[68] Qi Y, Ingólfsson H I, Cheng X, Lee J, Marrink S J and Im W 2015 J. Chem. Theory Comput. 11 4486
[69] Ou-Yang Z C and Helfrich W 1987 Phys. Rev. Lett. 59 2486
[70] Fernandez-Puente L, Bivas I, Mitov M and Méléard P 1994 Europhys. Lett. 28 181
[71] Patel L A and Kindt J T 2016 Soft Matter 12 1765
[72] Lai K, Wang B, Zhang Y and Zhang Y 2012 Phys. Chem. Chem. Phys. 14 5744
[73] Lai K, Wang B, Zhang Y and Zheng Y 2013 Phys. Chem. Chem. Phys. 15 270
[1] Heterogeneous hydration patterns of G-quadruplex DNA
Cong-Min Ji(祭聪敏), Yusong Tu(涂育松), and Yuan-Yan Wu(吴园燕). Chin. Phys. B, 2023, 32(2): 028702.
[2] Molecular dynamics simulations of A-DNA in bivalent metal ions salt solution
Jingjing Xue(薛晶晶), Xinpeng Li(李新朋), Rongri Tan(谈荣日), and Wenjun Zong(宗文军). Chin. Phys. B, 2022, 31(4): 048702.
[3] Modeling hydrogen exchange of proteins by a multiscale method
Wentao Zhu(祝文涛), Wenfei Li(李文飞), and Wei Wang(王炜). Chin. Phys. B, 2021, 30(7): 078701.
[4] Coarse-grained simulations on interactions between spectrins and phase-separated lipid bilayers
Xuegui Lin(林雪桂), Xiaojie Chen(陈晓洁), and Qing Liang(梁清). Chin. Phys. B, 2021, 30(6): 068701.
[5] Folding nucleus and unfolding dynamics of protein 2GB1
Xuefeng Wei(韦学锋) and Yanting Wang(王延颋). Chin. Phys. B, 2021, 30(2): 028703.
[6] Effect of interaction between loop bases and ions on stability of G-quadruplex DNA
Han-Zhen Qiao(乔汉真), Yuan-Yan Wu(吴园燕), Yusong Tu(涂育松), and Cong-Min Ji(祭聪敏). Chin. Phys. B, 2021, 30(1): 018702.
[7] Structural and dynamical mechanisms of a naturally occurring variant of the human prion protein in preventing prion conversion
Yiming Tang(唐一鸣), Yifei Yao(姚逸飞), and Guanghong Wei(韦广红)†. Chin. Phys. B, 2020, 29(10): 108710.
[8] Effects of Mg2+ on the binding of the CREB/CRE complex: Full-atom molecular dynamics simulations
Song Mao(毛松), Shuai Wang(王帅), Haiyou Deng(邓海游), Ming Yi(易鸣). Chin. Phys. B, 2019, 28(7): 078701.
[9] Molecular dynamics simulations of membrane deformation induced by amphiphilic helices of Epsin, Sar1p, and Arf1
Zhen-Lu Li(李振鲁). Chin. Phys. B, 2018, 27(3): 038703.
[10] A network of conformational transitions in an unfolding process of HP-35 revealed by high-temperature MD simulation and a Markov state model
Dandan Shao(邵丹丹), Kaifu Gao(高恺夫). Chin. Phys. B, 2018, 27(1): 018701.
[11] Computational study of non-catalytic T-loop pocket on CDK proteins for drug development
Huiwen Wang(王慧雯), Kaili Wang(王凯丽), Zeyu Guan(管泽雨), Yiren Jian(简弋人), Ya Jia(贾亚), Fatah Kashanchi, Chen Zeng(曾辰), Yunjie Zhao(赵蕴杰). Chin. Phys. B, 2017, 26(12): 128702.
[12] Molecular dynamic simulation of the thermodynamic and kinetic properties of nucleotide base pair
Yu-Jie Wang(王宇杰), Zhen Wang(王珍), Yan-Li Wang(王晏莉), Wen-Bing Zhang(张文炳). Chin. Phys. B, 2017, 26(12): 128705.
[13] A damping boundary condition for atomistic-continuum coupling
Jie Zhang(张杰), Kiet Tieu, Guillaume Michal, Hongtao Zhu(朱洪涛), Liang Zhang(张亮), Lihong Su(苏利红), Guanyu Deng(邓关宇), Hui Wang(王辉). Chin. Phys. B, 2017, 26(6): 068702.
[14] Helix-like structure formation of a semi-flexible chain confined in a cylinder channel
Xiaohui Wen(温晓会), Tieyu Sun(孙铁昱), Wei-Bing Zhang(张卫兵), Chi-Hang Lam(林志恒), Linxi Zhang(章林溪), Huaping Zang(臧华平). Chin. Phys. B, 2016, 25(9): 093601.
[15] Flexibility of nucleic acids: From DNA to RNA
Lei Bao(鲍磊), Xi Zhang(张曦), Lei Jin(金雷), Zhi-Jie Tan(谭志杰). Chin. Phys. B, 2016, 25(1): 018703.
No Suggested Reading articles found!