ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS |
Prev
Next
|
|
|
Controllable soliton propagation based on phase-front curvature in asymmetrical nonlocal media |
Huafeng Zhang(张华峰)1, Hua Lü(吕华)2, Jianghua Luo(罗江华)1, Lihui Sun(孙利辉)1 |
1 Institute of Quantum Optics and Information Photonics, Yangtze University, Jingzhou 434023, China;
2 Experimental Teaching Center, Guangdong University of Technology, Guangzhou 510006, China |
|
|
Abstract The influence of phase-front curvature on the dynamical behavior of the fundamental mode soliton during its transmission in asymmetrical nonlocal media is studied in detail and the phase-front curvature can be imposed on the fundamental mode soliton by reshaping or phase imprinting technologies. By changing the phase-front curvature or its imposed position, controllable soliton propagation in asymmetrical nonlocal media can be achieved.
|
Received: 24 January 2016
Revised: 20 March 2016
Accepted manuscript online:
|
PACS:
|
42.65.Jx
|
(Beam trapping, self-focusing and defocusing; self-phase modulation)
|
|
42.65.Tg
|
(Optical solitons; nonlinear guided waves)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grants Nos. 11547007 and 11304024), the Innovation Personnel Training Plan for Excellent Youth of Guangdong University Project (Grant No. 2013LYM_0023), and the Yangtze Fund for Youth Teams of Science and Technology Innovation (Grant No. 2015cqt03). |
Corresponding Authors:
Huafeng Zhang
E-mail: zhhf72@126.com
|
Cite this article:
Huafeng Zhang(张华峰), Hua Lü(吕华), Jianghua Luo(罗江华), Lihui Sun(孙利辉) Controllable soliton propagation based on phase-front curvature in asymmetrical nonlocal media 2016 Chin. Phys. B 25 084210
|
[1] |
Cirací C, Scalora M and Smith D R 2015 Phys. Rev. B 91 205403
|
[2] |
Aubourg Q and Mordant N 2015 Phys. Rev. E 91 041201(R)
|
[3] |
Strinati M C and Conti C 2014 Phys. Rev. A 90 043853
|
[4] |
Kartashov Y V, Zelenina A S, Torner L and Vysloukh V A 2004 Opt. Lett. 29 766
|
[5] |
Kartashov Y V, Vysloukh V A and Torner L 2014 Opt. Lett. 39 933
|
[6] |
Zhang H F, Zhu D S, Xu D H, Cai C M, Zeng H and Tian Y H 2014 Opt. Lett. 39 1133
|
[7] |
Wang H C, Ling D X and He Y J 2015 Chin. Phys. Lett. 32 074203
|
[8] |
Szameit A, Kartashov Y V, Dreisow F, Heinrich M, Pertsch T, Nolte S, Tünnermann A, Vysloukh V A, Lederer F and Torner L 2009 Phys. Rev. Lett. 102 153901
|
[9] |
Yang J K 2014 Opt. Lett. 39 1133
|
[10] |
Verma O N and Dey T N 2015 Phys. Rev. A 91 013820
|
[11] |
Dai Z, Wang Y and Guo Q 2008 Phys. Rev. A 77 063834
|
[12] |
Hu W, Ouyang S, Yang P, Guo Q and Lan S 2008 Phys. Rev. A 77 033842
|
[13] |
Peccianti M, Dyadyusha A, Kaczmarek M and Assanto G 2006 Nat. Phys. 2 737
|
[14] |
Peccianti M, Conti C, Assanto G, Luca A D and Umeton C 2004 Nature 432 733
|
[15] |
Snyder A W and Mitchell D J 1997 Science 276 1538
|
[16] |
Kivshar Y S and Agrawal G P 2003 Optical Solitons:From Fibers to Photonic Crystals (San Diego:Academic)
|
[17] |
Wu L, Zhang J F, Li L, Tian Q and Porsezian K 2008 Opt. Express 16 6352
|
[18] |
Wu L, Li L and Zhang J F 2008 Phys. Rev. A 78 013838
|
[19] |
Króikowski W and Bang O 2000 Phys. Rev. E 63 016610
|
[20] |
Zhang H F, Li L and Jia S T 2007 Phys. Rev. A 76 043833
|
[21] |
Wu X F, Deng D M and Guo Q 2011 Chin. Phys. B 20 084201
|
[22] |
Wang J, Li Y, Guo Q and Hu W 2014 Opt. Lett. 39 405
|
[23] |
Assanto G, Minzoni A A and Smyth N F 2014 Opt. Lett. 39 509
|
[24] |
Gomes R M, Salles A, Toscano F, Souto R P H and Walborn S P 2009 Phys. Rev. Lett. 103 033602
|
[25] |
Krolikowski W, Bang O, Rasmussen J J and Wyller J 2001 Phys. Rev. E 64 016612
|
[26] |
Bang O, Krolikowski W, Wyller J and Rasmussen J J 2002 Phys. Rev. E 66 046619
|
[27] |
Briedis D, Edmundson D, Bang O and Krolikowski W 2005 Opt. Express 13 435
|
[28] |
Hutsebaut X, Cambournac C, Haelterman M, Adamski A and Neyts K 2004 Opt. Commun. 233 211
|
[29] |
Nikolov N I, Neshev D, Krölikowski W, Bang O, Rasmussen J J and Christiansen P L 2004 Opt. Lett. 29 286
|
[30] |
Alberucci A, Jisha C P, Smyth N F and Assanto G 2015 Phys. Rev. A 91 013841
|
[31] |
Yang Z J, Ma X K, Zheng Y Z, Gao X H, Lu D Q and Hu W 2011 Chin. Phys. Lett. 28 074213
|
[32] |
Zhang H F, Xu F, Zhu D S, Zhang L, Xu D H and Tian Y H 2014 Opt. Express 22 995
|
[33] |
Kartashov Y V, Vusloukh V A and Torner L 2004 Phys. Rev. Lett. 93 153903
|
[34] |
Xu Z Y, Kartashov Y V and Torner L 2006 Opt. Lett. 31 2027-2029
|
[35] |
Shi X, Malomed B A, Ye F W and Chen X 2012 Phys. Rev. A 85 053839
|
[36] |
Lobanov V E, Kartashov Y V, Vysloukh V A and Torner L 2012 Opt. Lett. 37 4540
|
[37] |
Press W H, Teukolsky S A, Vetterling W T and Flannery B P 2001 Numerical Recipes in Fortran 77:The Art of Scientific Computing (Cambridge:Cambridge University) pp. 753-63
|
[38] |
Chiofalo M L, Succi S and Tosi M P 2000 Phys. Rev. E 62 7438
|
[39] |
Bao W Z, Chern I L and Lim F Y 2006 J. Comput. Phys. 219 836
|
[40] |
Chapra S C 2012 Applied Numerical Methods with MATLAB for Engineers and Scientists, 3rd edn. (McGraw-Hill) pp. 621-28
|
[41] |
Li L, Zhao X S and Xu Z Y 2008 Phys. Rev. A 78 063833
|
[42] |
Zhao X S, Li L and Xu Z Y 2009 Phys. Rev. A 79 043827
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|